
Copyright

by

Ioannis Rouselakis

2013

The Dissertation Committee for Ioannis Rouselakis
certifies that this is the approved version of the following dissertation:

Attribute-Based Encryption: Robust

and Efficient Constructions

Committee:

Brent Waters, Supervisor

Yevgeniy Dodis

Greg Plaxton

Vitaly Shmatikov

Emmett Witchel

David Zuckerman

Attribute-Based Encryption: Robust

and Efficient Constructions

by

Ioannis Rouselakis, B.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2013

Acknowledgments

I wish to thank my advisor, Brent Waters, for the invaluable advice and con-

tinuous trust he bestowed upon me during my time at UT. I would also wish

to thank Allison Lewko for our collaboration in various works, one of which is

included in this thesis, and for her valuable feedback. In addition, I would like

to thank my collaborators for the published works during my PhD: Omkant

Pandey, Yevgeniy Dodis, and Sherman Chow.

I would like to show my appreciation to my numerous friends who

showed me great hospitality and helped me enjoy life in Austin in its fullest:

Christos Argyropoulos, Dimitris Prountzos, Theofilos Giagmouris, and espe-

cially, Thekla Boutsika, who was the best and most giving neighbor and friend.

I wish to thank my parents, Litsa and Kostas, for everything they have done.

If it wasn’t for them, I would not be here today. Last but not least, I would

like to express my gratitude to my girlfriend, Helen Costa, for supporting me

unconditionally and sharing with me a happy life.

iv

Attribute-Based Encryption: Robust

and Efficient Constructions

Publication No.

Ioannis Rouselakis, Ph.D.

The University of Texas at Austin, 2013

Supervisor: Brent Waters

Attribute-based encryption is a promising cryptographic primitive that

allows users to encrypt data according to specific policies on the credentials of

the recipients. For example, a user might want to store data in a public server

such that only subscribers with credentials of specific forms are allowed to

access them. Encrypting the data once for each party is not only impractical

but also raises important privacy issues. Therefore, it would be beneficial to

be able to encrypt only once for all desired parties. This is achievable by

attribute-based encryption schemes, which come into several types and are

applicable to a wide range of settings.

Several attribute-based encryption schemes have been proposed and

studied with a wide range of characteristics. For example, initial construc-

tions proved to be significantly more challenging than constructing traditional

v

public-key encryption systems and they imposed restrictions on the expres-

siveness of the Boolean formulas used during encryption. For several proposed

schemes the total number of attributes was fixed during setup, while others al-

lowed any string to be used as attribute (“large universe” constructions), but

with considerable weaker security guarantees. Furthermore, these first con-

structions, although polynomial time, were impractical for wide deployment.

This thesis is motivated by two main goals for ABE schemes: robustness

and efficiency. For robustness, we propose a novel construction that achieves

strong security guarantees and at the same time augments the capabilities of

previous schemes. More specifically, we adapt existing techniques to achieve

leakage-resilient ABE schemes with augmented robustness features making

no compromises on security. For the second direction, our goal is to create

practical schemes with as many features as possible, such as “large universe”

and multi-authority settings. We showcase these claims with working imple-

mentations, benchmarks, and comparisons to previous constructions. Finally,

these constructions lead us to new directions that we propose and intend to

investigate further.

vi

Table of Contents

Acknowledgments iv

Abstract v

List of Tables xi

List of Figures xii

Abbreviations xiii

Notation xiv

Chapter 1. Introduction 1

1.1 Brief History of Attribute-Based Encryption and Related Func-
tionalities . 3

1.2 Brief Overview of Side-Channel Attacks and Leakage Resilience 7

1.3 Summary of Our Results . 9

1.4 Related Work . 19

1.5 Organization . 22

Chapter 2. Background 24

2.1 Access Structures & Linear Secret Sharing Schemes 24

2.1.1 Multi-Authority Attributes 27

2.1.2 Converting Monotone Boolean Formulas to Share Gener-
ating Matrices . 27

vii

2.2 Leakage Models . 30

2.3 Overview of Dual System Encryption 32

Chapter 3. Bilinear Groups 40

3.1 Abstract Properties of Bilinear Groups 41

3.1.1 Prime Order Bilinear Groups 41

3.1.2 Composite Order Bilinear Groups 42

3.2 Computational Assumptions 44

3.2.1 Three q-Type Assumptions on Prime Order Groups . . . 45

The q-DPBDH1 Assumption 46

The q-DPBDH2 Assumption 47

The q-DPBDH3 Assumption 48

3.2.2 Three Subgroup Decision Assumptions on Composite Or-
der Groups . 48

The Comp1 Assumption 50

The Comp2 Assumption 50

The Comp3 Assumption 50

3.3 Implementation of Bilinear Groups using Elliptic Curves . . . 51

3.3.1 Elliptic Curves . 51

3.3.2 Tate-Lichtenbaum Pairing over Finite Fields 52

3.3.3 Supersingular Curves and Distortion Maps 54

3.3.4 Prime vs Composite Order Group Operations 54

Chapter 4. Identity and Attribute-Based Encryption Systems 57

4.1 IBE Definition . 57

4.1.1 Dual System IBE . 59

4.2 ABE Definitions . 59

4.2.1 Ciphertext-Policy ABE 60

4.2.2 Key-Policy ABE . 61

4.2.3 Multi-Authority ABE 63

4.2.4 Small Universe, Large Universe, and Unbounded Con-
structions . 65

4.2.5 Dual System CP-ABE 67

viii

4.3 Security Notions . 68

4.3.1 CP-ABE Security Notions 68

4.3.2 KP-ABE Security Notions 70

4.3.3 Multi-Authority Static Security 71

4.3.4 IBE Leakage-Resilient Adaptive Security 73

4.3.5 CP-ABE Leakage-Resilient Adaptive Security 79

4.3.6 Three Properties for Leakage-Resilient Adaptive Security 82

4.4 Continual Leakage for IBE and ABE 89

4.4.1 Leakage from Updates 98

Chapter 5. Part I: Leakage-Resilient IBE and CP-ABE Systems 99

5.1 Leakage-Resilient IBE . 100

5.1.1 Construction . 100

5.1.2 Semi-Functionality . 103

5.1.3 Continual Leakage . 105

5.1.4 Security . 105

5.2 Leakage-Resilient CP-ABE . 121

5.2.1 Construction . 121

5.2.2 Semi-Functionality . 123

5.2.3 Security Proof . 125

5.3 Leakage Fraction . 141

Chapter 6. Part II: Three Practical Constructions 143

6.1 A Large-Universe KP-ABE System 143

6.1.1 Construction . 144

6.1.2 Security Proof . 146

6.2 A Large-Universe CP-ABE System 151

6.2.1 Construction . 151

6.2.2 Security Proof . 153

6.3 A Large-Universe Multi-Authority CP-ABE System 161

6.3.1 Construction . 162

6.3.2 Security Proof . 165

ix

Chapter 7. Implementations and Benchmarks 176

7.1 Charm Framework . 176

7.2 Implementation Details . 177

7.3 Benchmarks KP-ABE and CP-ABE 178

7.4 Group Operations (Asymptotic) for KP-ABE and CP-ABE . . 179

7.5 Benchmarks MA-CP-ABE . 179

Chapter 8. Other Work and Future Directions 185

8.1 Other Work . 185

8.2 Future Directions . 188

Appendices 189

Appendix A. Generic Security of the Assumptions 190

A.1 Two General Theorems . 191

A.2 Proofs of Security in the Generic Group Model 195

Appendix B. Proofs of Various Lemmas Used 200

B.1 A Useful Lemma for Leakage Analysis 200

B.2 Proof of claim 6.4 . 201

Appendix C. Source Code 206

C.1 KP-ABE scheme of Sec. 6.1 206

C.2 CP-ABE scheme of Sec. 6.2 211

C.3 MA-CP-ABE scheme of Sec. 6.3 217

C.4 Implementation of Dual Vector Spaces 224

Index 229

Bibliography 230

Vita 244

x

List of Tables

3.1 Two Types of Supersingular Elliptic Curves 55

3.2 Timing Results on Prime and Composite Order Groups 56

5.1 Leakage fractions of our IBE and CP-ABE schemes 142

7.1 Approximate security level of Charm ECC groups 177

7.2 Timing Results of our KP-ABE and CP-ABE Schemes 180

7.3 Asymptotic Complexity of our KP-ABE and CP-ABE Schemes 181

7.4 Timing Results of our MA-CP-ABE scheme and two single au-
thority schemes . 184

A.1 Exponent Table for the q-DPBDH1 Assumption 196

A.2 Exponent Table for the q-DPBDH2 Assumption 198

xi

List of Figures

2.1 Tree representation for the formula F 29

2.2 Access Policy for the formula F 29

6.1 Unreconstructible Key Components by the Simulator 157

6.2 Transformation of the policy matrix A 167

B.1 Blockwise inversion formula 204

xii

Abbreviations

The following abbreviations are used throughout the thesis.

PPT Probabilistic Polynomial Time
IBE Identity-Based Encryption
HIBE Hierarchical Identity-Based Encryption
ABE Attribute-Based Encryption
CP-ABE Ciphertext-Policy Attribute-Based Encryption
KP-ABE Key-Policy Attribute-Based Encryption
MA-CP-ABE Multi - Authority Ciphertext - Policy Attribute -

Based Encryption
LSSS Linear Secret-Sharing Scheme

xiii

Notation

The following standard notation is used throughout the thesis. Other notation

will be introduced close to the section being used.

N, Z Natural numbers and integers, respectively.

F, Fq General field and field of order q, respectively.

G, H, GT , . . . Various (multiplicative) groups.

1,1G,1H,1GT , . . . The identity element of various groups.

e(g, h) The bilinear mapping e : G × G → GT , where
g, h ∈ G.

A,A∗,Ai Access structures.

U ,UΘ Universe of attributes and universe of authorities,
respectively.

λ ∈ N Security parameter of our schemes.

‖p‖ The number of bits of p ∈ N, i.e. ‖p‖ = blog2 pc+1
for p ≥ 1.

|S| The number of elements of the set S.

poly(λ) A polynomially bounded function in λ. Namely,
there exists a constant c > 0 s.t. poly(λ) ≤ λc

for sufficiently large λ.

xiv

negl(λ) A negligible function in λ. Namely, for every con-
stant c > 0 it is true that negl(λ) ≤ λ−c for suffi-
ciently large λ.

[n] The set {1, 2, . . . , n}, where n ∈ N.

[n1, n2, . . . nk] The set [n1]×[n2]×. . .×[nk], where n1, n2, . . . , nk ∈
N.

Zp Integers modulo p ∈ N i.e. the set {0, 1, 2, . . .,
p− 1}.

Zm×np Matrices of dimension m× n with elements in Zp.
Special subsets are the set of row vectors of length
n: Z1×n

p , and the set of column vectors of length
n: Zn×1

p .

〈~v1, ~v2〉 The inner product of the vectors ~v1 and ~v2 of same
length. Each of them can be either a row or a
column vector.

A, B, C PPT adversaries modeled as probabilistic interac-
tive Turing machines. Typically, A denotes the
attacker, B the simulator, and C the challenger.

Alg, Setup, . . . Polynomial - time algorithms (possibly probabilis-
tic).

s ..= Alg(args) Setting the variable s to the result of the determin-
istic polynomial-time algorithm Alg run on inputs
args .

s
R← Alg(args) Setting the variable s to the result of the proba-

bilistic polynomial-time algorithm Alg run on in-
puts args and uniformly sampled random coins.

s
R← S Setting the variable s to a uniformly random ele-

ment of the set S.

s1, s2, . . . , sk
R← S Same as s1

R← S, s2
R← S, . . ., sk

R← S.

{Xi}i∈[n] The collection of terms X1, X2, . . . , Xn.

xv

{
Xi

R← Alg(args)
}
i∈[n]

The collection of terms X1, X2, . . . , Xn, where each
term is set to the result of the PPT algorithm Alg
run on inputs args and uniformly sampled random
coins, independently sampled on each call of the
algorithm.{

Xi
R← S

}
i∈[n]

The collection of terms X1, X2, . . . , Xn, where each
term is set to a uniformly random element of the
set S, independently from the rest.

⊥ Dummy value denoting a failed operation or “no
result”.

u~a With u ∈ G and ~a ∈ Zn, we define u~a =
(ua1 , ua2 , . . . , uan).

~ua With ~u = (u1, u2, . . . , un) ∈ Gn and a ∈ Z, we
define ~ua := (ua1, u

a
2, . . . , u

a
n).

en(~u1, ~u2) With ~u1 = (u11,u12,. . .,u1n)∈ Gn and ~u2 =
(u21, u22, . . ., u2n) ∈ Gn, we define the multi
- dimensional bilinear pairing as en(~u1, ~u2) =∏n

i=1 e(u1i, u2i) ∈ GT , where e : G × G → GT

is the bilinear mapping of G and the product is
the group operation of GT .

~u1 ∗ ~u2 With ~u1 = (u11, u12, . . . , u1n) ∈ Gn and ~u2 =
(u21, u22, . . . , u2n) ∈ Gn, we define the component-
wise multiplication (group operation) of the two
vectors. That is, ~u3 = ~u1 ∗ ~u2 ∈ Gn if and only if
for all i ∈ [n]: u3i = u1i · u2i where · denotes the
group operation.

xvi

CHAPTER 1

Introduction

Traditional public key cryptography has provided users with ways to achieve

secure communication over a public channel. After the seminal work of Gold-

wasser and Micalli, the security notions needed for public key systems were

formalized and opened the way for provably fully secure systems even against

extremely powerful adversaries. Even if these adversaries could deploy chosen

plaintext (or chosen ciphertext) attacks on a polynomial number of messages

(or ciphertexts), the security proofs showed that no information can be ex-

tracted from the challenge plaintext.

However with the wide expansion of the world wide web and the need for

secure communication in a wide network of users, each with complex creden-

tials, various researchers suggested the use of extended functionalities, which

would exceed the features of public key encryption in various ways. For ex-

ample, if the sender of the message wants to post his ciphertext on a public

1

bulletin board such that only the parties with the required credentials being

able to decrypt, he would have to retrieve the public key of each party with

the required credentials and create a separate ciphertext for each.

This approach suffers from three main drawbacks making it inapplicable

to real world large scale networks. The first one is the obvious inefficient

procedure of having to encrypt separately for each specific user. The number

of users with the required credential might be prohibitively large. The second

major drawback is the privacy issues raised when any user of the system is

allowed to scan or acquire the credentials of any other user. It might be the

case that these credentials are supposed to be confidential and not publicly

available. Finally, in the common case that a new user is added with the

required credentials, the encryptor has to re-encrypt his message under the

public key of the new user. This places a large burden on the encrypting parties

to store their plaintexts and continuously update their posted ciphertexts.

Attribute-based encryption (ABE) is a cryptographic primitive that

addresses to the fullest the above issues and finds applications to a wide range

of settings, from regular users over the world wide web to large multi structural

corporations. It was a notion introduced by Sahai and Waters [99] that relates

the cryptographic components with attribute sets, corresponding to available

credentials for users, and access policies, corresponding to the possibly complex

restrictions that the credentials have to satisfy. In the most common form

of ABE, the ciphertext-policy ABE (CP-ABE), the secret key of each user is

associated with a set of attributes/credentials and each ciphertext is associated

2

with a policy on the universe of credentials. If the policy is satisfied by the set

of credentials of the key, then the owner of this key can decrypt successfully the

ciphertext. The second form of ABE is the key-policy ABE (KP-ABE), where

each key is associated with a policy on the attribute sets and each ciphertext

with a set of attributes. As in the former setting, if the policy of the key is

satisfied by the set of credentials of the ciphertext, then decryption is possible.

The main objectives of this work are to expand the state-of-the-art

ABE systems towards more efficient and more robust constructions. The first

goal aims at “bringing ABE to practice” through constructions that work with

the fastest possible cryptographic components, achieve advanced features, such

as large-universe and multi-authority settings, and admit the fewest possible

compromises in provable security. The second part of this thesis provides a

fully secure ABE construction that achieves resilience against extensive side-

channel attacks and showcases the use of the dual system encryption frame-

work towards a novel direction. Namely, it shows how this framework is not

only useful for providing full security, as presented in past works, but also for

contributing to the orthogonal feature of leakage resilience.

1.1 Brief History of Attribute-Based Encryption and
Related Functionalities

The first idea that was directly related to attribute-based encryption,

and the more general notion of functional encryption, was the Identity-Based

Encryption functionality (IBE), introduced by Shamir [100]. To encrypt using

3

an identity-based encryption scheme a user only needs the public parameters

of the scheme and the identity of the recipient, which can be for example his

e-mail address or any arbitrary string. In some sense the “public key” of a

user is his publicly known identity and no information has to be published

by the recipient such as a regular public key, thus alleviating the need for

a public key distribution system. The secret keys for each identity, which

are needed for decrypting the ciphertexts, are generated by a trusted master

authority and given to the corresponding users after authentication by the

authority. The next generalization of IBE was the Hierarchical Identity-Based

Encryption functionality (HIBE) in which a hierarchy is imposed on the set

of users/identities of the system. In these systems, each user can serve as the

trusted authority for a subset of other users by being able to generate secret

keys for them using its own secret key. These users can in turn generate secret

keys for a smaller subset of users using their secret keys, and so on. The master

trusted authority lies at the top of the hierarchy tree and is able to generate

secret keys for all identities.

Attribute-Based Encryption (ABE), introduced by Sahai and Waters

[99], was another generalization of IBE. In its most natural form, called Ci-

phertext - Policy ABE (CP-ABE), each user possesses a set of attributes/cre-

dentials and a secret key corresponding to these attributes. The secret key

is provided by a trusted master authority that authenticates and verifies the

credentials of the users and provides the encryption functionality via a set of

public parameters. The encrypting party can define any Boolean formula on

4

the set of attributes and produce a ciphertext that is decryptable by only the

users whose credentials satisfy the Boolean formula. This formula is referred

to as the policy of the ciphertext. As a result, the encryptor creates only one

ciphertext for all the target users and is oblivious of their exact identities.

Also, the ciphertext creation is independent of the creation and distribution

of secret keys. New users can acquire additional credentials and they might be

able to legally decrypt the previously created ciphertext. IBE is a special form

of ABE, since it can be seen as an attribute-based system where each user

can acquire only one attribute, his identity, and each ciphertext is build using

a policy that contains only one attribute, the required identity. Finally, we

mention here that all these functionalities are special cases of Functional En-

cryption systems [24], where each secret key and ciphertext is associated with

some information x and y, respectively, and the decryption of the ciphertext

with the secret key outputs the value of a function f(x, y). For example, in

IBE each secret key is associated with an identity ID = x and the ciphertext

with an identity / plaintext pair (ID′,M) = y. The function f(x, y) outputs

M if and only if ID = ID′.

Constructions The first construction of identity-based encryption

was given by Boneh and Franklin [20] and presented one of the first uses of

bilinear pairing groups in cryptography. The scheme was proved secure in

the random oracle model under a new computational assumption on bilinear

groups. The first construction in the standard model was given by Boneh and

Boyen [21], but it was proved secure under a weaker security notion called

5

selective security. The first works that provided fully secure IBE construc-

tions were given by Boneh and Boyen [17] and Waters [110]. Both of these

works used the common methodology of partitioning proofs. However the rich

structure of the keys of HIBE and ABE systems imposed an exponential degra-

dation to the security of these schemes using partitioning techniques. The first

fully secure constructions were given later along with the development of the

ABE notions.

Prior to our works, several attribute-based encryption schemes have

been proposed in the literature with a wide range of characteristics. The

refinement of the ABE notion was proposed shortly after its introduction in the

work of Goyal et al. [57], where they considered two dual notions. One is the

aforementioned notion of ciphertext-policy ABE, where the users possess a set

of attributes and the ciphertext is tagged with a policy. On the other hand, in

the Key-Policy ABE (KP-ABE), each secret key is tagged by a policy/Boolean

formula while the ciphertext is related to a set of attributes. In that setting,

each user holds a number of secret keys that are tagged with specific policies,

and he can decrypt the ciphertext if and only if one of his keys has a policy that

is satisfied by the ciphertext’s attribute set. At the time of writing this thesis,

most ABE schemes can work natively using any monotone Boolean formula

as a policy. Non monotone Boolean formulas can be simulated by allowing

negative attributes with linear overhead. One exception is the ABE scheme by

Ostrofsky et al. [90] that supports natively non monotone Boolean formulas.

Several selectively-secure ABE schemes were presented in these works and

6

others [35, 56, 112].

The first fully secure constructions for HIBE under the standard model

were presented by Waters and Lewko-Waters [72, 111] using the so-called dual

encryption methodology. Using the same techniques Lewko et al. [68] and

Okamoto et al. [86] presented the first fully secure ABE schemes. In this the-

sis, among other techniques, we will leverage the same methods to achieve the

orthogonal direction of leakage resilience. Finally, we mention here the sug-

gestion of the multi-authority setting by Sahai and Waters [99], which defines

the problem of constructing an attribute-based scheme where several inde-

pendent master authorities authorize users for different credentials. The first

paper to attempt this was by Chase [33]. These constructions allow users to

encrypt data according to policies that contain attributes from different con-

trol domains and maps better to the real world, where the credentials of each

user are not all authorized by a central authority. For example, the author-

ity “University of Texas at Austin” might issue secret keys for the attribute

“PhD student”, while the “U.S.A.” authority might issue secret keys for the

attribute “U.S. Citizen”. These systems can be applied to numerous settings

and constituted one of the main directions in “bringing ABE to practice”.

1.2 Brief Overview of Side-Channel Attacks and
Leakage Resilience

Defining and achieving the right security models is crucial to the value

of provably secure cryptography. When security definitions fail to encompass

7

all of the power of potential attackers, systems which are proven “secure”

may actually be vulnerable in practice. It is often not realistic or desirable to

address such problems solely at the implementation level. For example, public

key cryptography alleviated the need for a hardware-secure communication

channel by allowing users to transmit messages securely using only public

information. Therefore, the ultimate goal of cryptography should be to provide

efficient systems which are proven secure against the largest possible class

of potential attackers. Additionally, these systems should provide the most

advanced functionalities available.

In the recent years, a long line of research is motivated by a variety of

side-channel attacks [12, 13, 18, 19, 49, 58, 65, 66, 81, 96], which allow attackers

to learn partial information about secrets by observing physical properties of

a cryptographic execution. The first techniques by Kocher and Boneh et al.

[18, 65] used timing measurements on the machines implementing the crypto-

graphic protocols to extract secret information about the public keys. Other

works like Kocher et al. and Bihma et al. [13, 66] used differential power anal-

ysis to achieve the same goal. For example by examining the power trace of a

device during elliptic curve operations one was able to extract the bits of the

secret key one by one [14]. Works by Quisquater et al. [96] and Gandolfi et al.

[49] used electromagnetic analysis. Finally, the cold-boot attack of Halderman

et al. [58] allows an attacker to learn information about memory contents of a

machine even after the machine is powered down. Following these works the

emergence of leakage-resilient cryptography has led to constructions of many

8

cryptographic primitives which can be proven secure even against adversaries

who can obtain limited additional information about secret keys and other

internal state.

Leakage-resilient cryptography in the strongest security notion (see Sec.

2.2) models a large class of side-channel attacks by allowing the attacker to

specify an efficiently computable leakage function f and learn the output of f

applied to the secret key and possibly other internal state at specified moments

in the security game. Clearly, limits must be placed on f to prevent the

attacker from obtaining the entire secret key and hence easily winning the

game. One approach is to bound the total number of bits leaked over the

lifetime of the system to be significantly less than the bit-length of the secret

key [1, 80]. Another approach is to continually refresh the secret key and

bound the leakage between each update (this is called “continual leakage”)

[28, 39]. Both of these approaches have been employed successfully in a variety

of settings, yielding constructions of stream ciphers, signatures, symmetric key

encryption, public key encryption, and identity-based encryption (IBE) which

are leakage-resilient under various models of leakage [1, 4, 5, 27, 28, 30, 36, 38–

40, 43–46, 63, 80, 94].

1.3 Summary of Our Results

Leakage Resilient Constructions The first half of the thesis is fo-

cused on resilience against side-channel attacks. Several security notions were

presented to model the real world more closely and resulted in the so-called

9

leakage resilient schemes (Akavia et al. [1]). A scheme which is leakage re-

silient is secure against all polynomial time attackers, who can not only gather

public information about the system (such as public keys and transmitted ci-

phertexts), but they can specify an arbitrary leakage function that acts on the

secret key of the system and receive its output. This function models the afore-

mentioned side-channel attacks and has to satisfy several restrictions that map

closer to the above attacks. For example, the timing measurements or power

dissipation attacks lead to the model “only computation leaks information”

by Micali et al. [77], where the leakage function is applied only on computa-

tions and can act only on the data (secret keys, random coins, etc.) that is

“touched” during these computations. The cold-boot attacks of Halderman

et al. [58] allow the attacker to gather some information from the memory

contents of the machine. This and similar works suggested the need for the

“bounded” and the “continual” leakage models, where the leakage function

is more general and is allowed to act on any data stored in the challenger’s

machine regardless of whether they are used in computations or not. In the

“bounded” model the function’s output size is bounded by a specific threshold

which is always less than the size of the secret key. If the attacker was able

to acquire the entire secret key he would be able to trivially break the secu-

rity of the scheme. Therefore, the main goal of these schemes is to allow as

much leakage as possible (optimally 1 − ε of the secret key size, where ε is a

very small positive constant), while at the same time remaining secure. In the

“continual” leakage model there exists one (or more) update algorithms that

10

act on the secret parameters and “re-randomize” them suitably. The leakage

function is allowed to act only on the updated versions and the amount of

leakage is bounded only between two updates. The total amount of leakage

can be arbitrary. Several constructions have been presented in this setting

with a diverse variety of features [28, 39].

Following these works we propose several methods to achieve leakage

resilience for a variety of schemes. We present three identity-based encryption

systems that are secure under bounded leakage attacks. Identity-based en-

cryption is a simpler form of attribute-based encryption where the encryptor

uses only the identity (possibly a string or an email address) of the recipient

in order to encrypt. It is equivalent to the setting where a user owns only one

“attribute”: his name. We use a novel tagging technique to expand the secret

key space such that leakage from the secret key does not give to the attacker

any non-negligible advantage in breaking security of the scheme. This tech-

nique was applied to several non-leakage-resilient schemes to provide schemes

that are provably leakage-resilient. The original systems used random secret

keys with only one degree of freedom, which was explorable to the secret key

holder. This means that the owner of the secret key could re-randomize his

key arbitrarily without knowing the secret parameters of the IBE system (the

master secret key). In this sense the information each key holds is determin-

istic. The new technique we applied was to add another randomness to the

secret keys, called “tag”, coupled with some master secret key terms. As a

result, the secret-key holder cannot anymore re-randomize his key (in this de-

11

gree of freedom). The added randomness allows the simulators of our security

proofs to provide the attacker leaked information from a properly distributed

secret key with a tag of our choice.

This idea of adding additional degrees of freedom to the secret keys

of our systems is used in the main construction of the first part of the the-

sis. We utilize the dual system methodology introduced by Waters [111] in

order to provide fully secure constructions of different IBE, HIBE, and ABE

schemes. Our idea was to use this methodology to modify existing dual system

encryption system to leakage-resilient ones. We show that the techniques of

dual system encryption naturally lead to leakage resilience. We demonstrate

this by providing leakage-resilient constructions of IBE, HIBE, and ABE sys-

tems which retain all of the desirable features of dual system constructions,

like full security from static assumptions and close resemblance to previous

selectively secure schemes. We present our combination of dual system en-

cryption and leakage resilience as a convenient abstraction and reduce proving

security to the establishment of three properties. Our approach not only com-

bines the benefits of dual system encryption and leakage resilience, but also

qualitatively improves upon the leakage tolerance of previous leakage-resilient

schemes. In particular, our system can tolerate leakage on the master key, as

well as leakage on several keys for each identity (this can be viewed as contin-

ual leakage, where secret keys are periodically updated and leakage is allowed

only between updates, and not during updates). Previous schemes only al-

lowed bounded leakage on one secret key per identity, and allow no leakage on

12

the master key. Some works allowed bounded leakage on each of many keys per

identity, but allowed no leakage on the master key. We develop a simple and

versatile methodology for modifying a dual system encryption construction

and proof to incorporate strong leakage resilience guarantees. The change to

the constructions is minimal, and can be viewed as the adjoining of a separate

piece which does not interfere with the intuitive and efficient structure of the

original system. Essentially, we show that dual system encryption and leakage

resilience are highly compatible, and their combination results in the strongest

security guarantees available for cryptosystems with advanced functionalities.

Efficient Constructions While the dual system framework is highly

useful for the proofs, the current constructions use bilinear groups of large

composite order or a prime order framework, called dual pairing vector spaces

(DPVS) [69, 84–86, 89], that “emulates” the characteristics of the composite

order groups . Computations on group elements of composite order induce

a significant overhead on the constructions, since they are inherently slower

than their prime order counter-parts (see Sec. 3.3.4). On the other hand,

DPVS schemes work roughly by substituting a small number of composite

group elements with a vector of sufficiently high dimension of prime order

group elements. The dimension of the vectors, and thus the number of group

elements, should be high enough (10 ∼ 60) to ensure security. As a result, the

dual system schemes sustain a significant efficiency overhead in comparison to

prime order ABE constructions.

Therefore, our second line of work focused on bringing attribute-based

13

encryption closer to practical implementations and at the same time providing

novel techniques to achieve augmented features and provable security. The

trade-off we have to sustain is that relaxed security notions were used due to

the fact that we did not use the dual system methodology and resorted to

older “program and cancel” techniques. More specifically, we had to embed

the terms of our complexity assumptions into the public parameters of ours

systems in the security proof so that we achieve the necessary calculations.

Our first work towards that direction focuses on the “large universe” feature

of the schemes. A common classification property of ABE constructions is

whether the attribute set is “small universe” or “large universe”. In “small

universe” constructions the size of the attribute space is polynomially bounded

in the security parameter and the attributes were fixed at setup. Moreover,

the size of the public parameters grew linearly with the number of attributes.

In “large universe” constructions, on the other hand, the size of the attribute

universe can be exponentially large and is thus desirable to have.

Achieving the large universe property can be challenging on its own.

Different works either imposed restrictions on the expressiveness of the policies

or were proved secure in the random oracle model. For constructions that

had no bounds on the expressiveness of policies and constant sized public

parameters, the random oracle security model was used. The above restrictions

place undesirable burdens on the deployment of ABE schemes. If the designer

of the system desires the benefits of avoiding the random oracle heuristic, he

has to pick a specific bound for the expressiveness of the system at the setup

14

time; either the size of the attribute universe or the bound on the policies. If

the bound is too small, the system might exhaust its functionality and will

have to be completely rebuilt. For example, consider the design of a framework

that allows attribute-based encryption in a huge multinational company and

suppose that, as this company expands, a large number of new attributes have

to be added to the system. If this number exceeds the bound set during the

initial deployment of the system, then the company would have to re-deploy

the (expanded) system and possibly re-encrypt all its data spending a huge

amount of expenses. On the other hand, if the bound chosen is too big, the

increased size of the public parameters will impose an unnecessary efficiency

burden on all operations. The first large universe constructions in the standard

model were presented in the work of Lewko et al. [74]. They presented the

first large universe key-policy ABE construction, secure in the standard model

using the dual system framework on composite order groups to prove security.

The system was proved selectively secure under static assumptions.

We aim to get practical large universe ABE schemes by adapting and

expanding the system from this work into the prime order setting. In proving

security we go back to more traditional “program and cancel” techniques in-

stead of the dual system framework. We present two practical large universe

ABE constructions (one ciphertext-policy and one key-policy ABE) in prime

order bilinear groups both selectively secure in the standard model under two

different q-type assumptions. Our three main objectives in this work were

large universe constructions, efficiency, and security in the standard model.

15

Both schemes support a “large universe” attribute space and their public pa-

rameters consist of a constant number of group elements. No bounds or other

restrictions are imposed on the monotonic Boolean formulas or the attribute

sets used by the algorithms of the schemes; thus eliminating the need for design

decisions at setup. The efficiency objective refrained us from using compos-

ite order groups or dual pairing vector spaces, while to achieve security in

the standard model we relied to non-static (q-type) assumptions and selec-

tive notions. These assumptions are non-static in the sense that a polynomial

number of terms is given to the adversary and therefore they are intuitively

stronger than the static ones. However, the polynomial number of terms gives

the ability to the simulator of the proof to embed the additional entropy in

the constant number of public parameters. We showcase different techniques

for harnessing the power of these assumptions to achieve our large universe

constructions. Finally, we demonstrate the efficiency of our constructions by

implementing our schemes. We compare performance results to other ABE

schemes in prime order groups.

Our second work towards more efficient ABE schemes focuses on the

multi-authority setting of attribute-based encryption. The typical scenario

presented for ABE is where a single authority issues all private keys. This

works well in the setting where data is managed within one organization or

trust domain. However, there are many scenarios when one will wish to de-

scribe a policy that spans multiple trust domains. For example, U.S. military

and defense are several organizations that wish to manage the distribution of

16

their own credentials. If we wished to write an access policy that referenced

credentials from both of them using standard ABE, we would require one or-

ganization ceding control to another or a third party. To address this issue,

multi-authority or decentralized ABE systems were constructed by Chase [33],

where multiple parties could play the role of an authority. Initial attempts at

such systems sacrificed a significant amount of expressiveness compared to

analogs in the one authority setting. Lewko et al. in [73] provided a system

that roughly matched the expressiveness. In their system a policy could be

expressed as any monotonic Boolean formula over attributes that can be is-

sued by any authority which publishes a public key. Their main construction

technique is to use a hash over a global identifier. Upon decryption this extra

component serves as a “blinding factor” that only disappears if the cipher-

text is satisfied. While the expressiveness, of this distributed ABE system

is relatively strong, there are three major aspects that impact its practical

performance compared to single authority systems.

First, the construction is set in a group of composite order N where N

is the product of three primes. This alone can make certain operations such

as exponentiation over an order of magnitude slower (see Sec. 3.3.4). Second,

each authority in the system can “natively” support only a single attribute. If

in practice we would like one party to act as an authority for up to c attributes,

the party would have to create a public key consisting of c native public keys

(thus blowing up the size by a factor of c). Furthermore, this only works if

the attributes managed by that party can be enumerated ahead of time. This

17

means that the attribute universe is restricted to polynomial size. Finally, the

system has the native property that each authority can be used only once in

each formula. In practice, if we want to get around this and let it be used up

to d times we can apply a simple encoding technique due to Lewko et al. [68].1

This encoding however comes at the cost of blowing up both the parameters

of the authority and the private key components issued by the authority by a

factor of d. To make things concrete suppose that we wanted a system with an

authority that managed 20 attributes each of which appeared at most 10 times

in the any formula. Then the published parameters for just that one authority

would need to blowup by a factor of 200 (compared to a contemporary single

use CP-ABE system [25, 112]) just to deal with the encoding overhead.

We construct and implement a new decentralized ABE cryptosystem

that aims to get performance close to existing single authority constructions.

Our approach is to use the aforementioned construction as a substrate from

which we make two significant changes to improve performance. First, we take

the existing construction and pare it down to the prime order setting. This

will make it inherently faster, but incompatible with the dual system proof

techniques used before. Second, we add an additional piece to each ciphertext

and private key component which allows us to use any string as an attribute —

thus addressing the problem of an authority only supporting a single attribute

and the small universe restriction. At the same time, the second change allows

1The one use restriction is needed to make the security proof of Lewko and Waters go
through, if the one use restriction were violated there is neither a known attack nor a security
proof.

18

the system to utilize each attribute as many times as needed in each policy. We

create a proof of security in a static or selective model of security where both

the challenge ciphertexts and key queries are issued before the parameters are

published. In this setting we will extend the existing “program and cancel”

techniques to adapt to the multi-authority setting and introduce two new

ones. The trade-offs for our performance improvements are the use of the

static model and an assumption whose size depends on the complexity of

the challenge ciphertext policy. To demonstrate the abilities of our system we

implemented our algorithms in Charm [2, 32], a framework developed for rapid

cryptographic prototyping, and we provide timing results.

1.4 Related Work

Attribute-Based Encryption was introduced by Sahai and Waters [99].

In this work, the key-policy and ciphertext-policy notions were defined and

many selectively secure constructions followed [11, 35, 56, 90, 95, 112]. Most

of them work for non monotonic access structures with the exception of the

schemes by Ostrovsky, Sahai, and Waters [90], who showed how to realize

negation by incorporating specific revocation schemes into the GPSW con-

struction. Fully secure constructions in the standard model were first provided

by Okamoto and Takashima [86] and Lewko, Okamoto, Sahai, Takashima, and

Waters [68]. The first large universe KP-ABE construction in the standard

model was given by Lewko et al. [74] (composite order groups). Okamoto

and Takashima initiated the dual pairing vector space framework in various

19

works [84–86, 89], which lead to the first large universe KP-ABE construc-

tion in prime order group groups by Lewko [70]. Parameterized (non static)

assumptions were introduced by Boneh et al. [21] and used in several subse-

quent works [53, 112]. The problem of an environment with multiple central

authorities in ABE was considered in [33, 34, 73], while several authors have

presented schemes that do not address the problem of collusion resistance

[3, 7, 8, 26, 78, 105].

We note that several techniques in ABE schemes have roots in Identity-

Based Encryption (IBE) and Hierarchical Identity-Based Encryption (HIBE)

[21–23, 37, 52, 53, 101, 110]. Finally, we mention here the related concept of

Predicate Encryption introduced by Katz, Sahai, and Waters [64] and further

refined in [24, 68, 85, 86, 102, 103].

Leakage resilience has been studied in many previous works, under

a variety of leakage models [1, 4, 5, 27–30, 38–46, 59, 61, 63, 77, 80, 93, 94, 107].

Exposure-resilient cryptography [29, 42, 61] addressed adversaries who could

learn a subset of the bits representing the secret key or internal state. Sub-

sequent works have considered more general leakage functions. Micali and

Reyzin [77] introduced the assumption that “only computation leaks informa-

tion.” In other words, one assumes that leakage occurs every time the cryp-

tographic device performs a computation, but that any parts of the memory

not involved in the computation do not leak. Under this assumption, leakage-

resilient stream ciphers and signatures have been constructed [45, 46, 94]. Ad-

ditionally, Juma et al. and Goldawasser et al. [54, 60] have shown how to

20

transform any cryptographic protocol into one that is secure with continual

leakage, assuming that only computation leaks information and also relying

on a simple, completely non-leaking hardware device.

Since attacks like the cold-boot attack [58] can reveal information about

memory contents in the absence of computation, it is desirable to have leakage-

resilient constructions that do not rely upon this assumption. Several works

have accomplished this by bounding the total amount of leakage over the life-

time of the system, an approach introduced by Akavia et al. [1]. This has

resulted in constructions of pseudorandom functions, signature schemes, pub-

lic key encryption, and identity-based encryption [4, 5, 36, 40, 63, 80] which are

secure in the presence of suitably bounded leakage. For IBE schemes in par-

ticular, this means that an attacker can leak a bounded amount of information

from only one secret key per user. This does not allow a user to update/re-

randomize his secret key during the lifetime of the system.

Recently, two works have achieved continual leakage resilience without

assuming that only computation leaks information [28, 39]. Dodis, Haralam-

biev, Lopez-Alt, and Wichs [39] construct one-way relations, signatures, identi-

fication schemes, and authenticated key agreement protocols which are secure

against attackers who can obtain leakage between updates of the secret key.

It is assumed the leakage between consecutive updates is bounded in terms of

a fraction of the secret key size, and also that there is no leakage during the

update process. Brakerski, Kalai, Katz, and Vaikuntanathan [28] construct

signatures, public key encryption schemes, and (selectively secure) identity-

21

based encryption schemes which are secure against attackers who can obtain

leakage between updates of the secret key, and also a very limited amount of

leakage during updates and during the initial setup phase. The leakage be-

tween updates is bounded in terms of a fraction of the secret key size, while

the leakage during updates and setup is logarithmically small as a function of

the security parameter.

The dual system encryption methodology was introduced by Waters in

[111]. It has been leveraged to obtain constructions of fully secure IBE and

HIBE from simple assumptions [111], fully secure HIBE with short ciphertexts

[72], fully secure ABE and Inner Product Encryption (IPE) [68], and fully

secure functional encryption combining ABE and IPE [86].

Independently, Alwen and Ibraimi [6] have proposed a leakage resilient

system for a special case of Attribute-Based Encryption, where the ciphertext

policy is expressed as a DNF. Their work pursues a different technical direction

to ours, and provides an interesting application of hash proof systems to the

ABE setting. Security is proven from a “q-type” assumption.

1.5 Organization

In Chapter 2 we present some background information about access

structures and attributes, about the various leakage-resilience models, and

a brief overview of the ideas behind dual system encryption. In Chapter 3

we describe the cryptographic substrate, the building elements, used for our

constructions. We present both the abstract properties of these groups, which

22

are needed for the constructions and the security proofs, and some information

about the concrete realizations of these objects in software. In Chapter 4 we

present the formal definitions and security notions of all the functionalities

presented in this thesis. The “robust” leakage-resilient ABE construction that

works on composite order groups is shown in Chapter 5. Chapter 6 contains

our “efficient” constructions along with their security proofs. These are the

three ABE schemes (CP-ABE, KP-ABE, MA-CP-ABE) that work on prime

order groups. In Chapter 7 we present implementation results and benchmarks

that compare the efficiency of the schemes of Chapter 6 to other deployed

ABE schemes. In Chapter 8 we discuss further work and future directions.

In Appendices A and B we present the proofs of security of our assumptions

in the generic group model and proofs of some lemmas not included in the

main body. Finally, the source code of our implementations is included in in

Appendix C.

23

CHAPTER 2

Background

2.1 Access Structures & Linear Secret Sharing Schemes

In this section, we present the formal definitions of access structures

and linear secret-sharing schemes introduced by Amos Beimel [9], adapted

to match our setting. Intuitively, the access structures describe the abstract

notion of a policy on the attribute universe, while the linear secret sharing

schemes (LSSS) describe a concrete way to implement the sharing of a secret

according to a specific policy. All our constructions assume the use of an

LSSS to express the policies, although they can easily be adapted to other

secret sharing schemes, such as access trees [57], monotone span programs

[62], and others.

Definition 2.1 (Access Structures [9]). Let U be the attribute universe. An

access structure on U is a collection A of non-empty sets of attributes, i.e.

A ⊆ 2U \ {}. The sets in A are called the authorized sets and the sets not in

24

A are called the unauthorized sets.

Additionally, an access structure is called monotone if ∀B,C ∈ A : if

B ∈ A and B ⊆ C, then C ∈ A.

In our construction, we only consider monotone access structures, which

means that as a user in the CP-ABE setting acquires more attributes, he will

not lose his possible decryption privileges. In the KP-ABE setting, this means

that as the message is encrypted with more attributes, the set of users that

can decrypt it grows. General (not necessarily monotone) access structures in

large universe ABE can be realized by splitting the attribute universe in half

and treating the attributes of one half as the negated versions of the attributes

in the other half [57].

Definition 2.2 (Linear Secret-Sharing Schemes (LSSS) [9]). Let p be a prime

and U the attribute universe. A secret-sharing scheme Π with domain of

secrets Zp realizing access structures on U is linear over Zp if

1. The shares of a secret z ∈ Zp for each attribute form a vector over Zp.

2. For each access structure A on U , there exists a matrix A ∈ Z`×np , called

the share-generating matrix, and a function δ, that labels the rows of A

with attributes from U , i.e. δ : [`]→ U , which satisfy the following:

During the generation of the shares, we consider the column vector ~v =

(z, r2, . . . , rn)⊥, where r2, . . ., rn
R← Zp. Then the vector of ` shares of

25

the secret z according to Π is equal to ~λ = A~v ∈ Z`×1
p . The share λj

with j ∈ [`] “belongs” to attribute δ(j).

We will be referring to the pair (A, δ) as the policy of the access structure

A.

Each secret-sharing scheme (not only the linear ones) should satisfy the

reconstruction requirement, i.e. each authorized set can reconstruct the secret,

and the security requirement, i.e. any unauthorized set cannot reveal any par-

tial information about the secret. More concretely, let S denote an authorized

set of attributes and let I be the set of rows whose labels are in S. There

exist constants {ci}i∈I in Zp such that for any valid shares {λi = (A~v)i}i∈I

of a secret z according to Π, it is true that:
∑

i∈I ciλi = z. Equivalently,∑
i∈I ci

~Ai = (1, 0, . . . , 0), where ~Ai is the i-th row of A. Additionally, it has

been proved in [9] that the constants {ci}i∈I can be found in time polynomial

in the size of the share-generating matrix A.

On the other hand, for unauthorized sets S ′ no such constants {ci}

exist. In this case it is also true that if I ′ = {i|i ∈ [`]∧ ρ(i) ∈ S ′}, there exists

a vector ~d ∈ Z1×n
p , such that its first component d1 = 1 and

〈
~Ai, ~d

〉
= 0 for

all i ∈ I ′.

Finally, we note that if the access structure is encoded as a monotonic

Boolean formula over attributes there is a generic algorithm that generates the

corresponding access policy in polynomial time [9, 73] (See Sec. 2.1.2).

26

2.1.1 Multi-Authority Attributes

In the multi-authority setting, each attribute is controlled by a specific

authority θ ∈ UΘ, where UΘ is the set (universe) of all authorities. We assume

there is a publicly computable function T : U → UΘ that maps each attribute

to a unique authority. Using this mapping a second labeling of rows is defined

in a policy (A, δ), which maps rows to attributes via the function ρ(·) def
=

T(δ(·)).

As an example of the mapping T, in our implementation of a multi-

authority scheme, both the attribute id’s and the authority id’s consist of

case-sensitive alphanumeric strings. The full attributes’ names are of the form

“[attribute–id]@[authority–id]” and the mapping T just extracts the part after

the @ of the attribute string.

2.1.2 Converting Monotone Boolean Formulas to Share Generating
Matrices

In this section we present a general transformation from any monotone

access structure on the attribute universe, expressed as a Boolean formula

on attributes, to a share generating matrix A that can be used to express

this policy. Monotone access structures are expressed by monotone Boolean

formulas, i.e. formulas that contain only AND (∧) and OR (∨) gates and the

atoms consist of attributes in the attribute universe. For example, consider

the formula

F = ((V ∧ U) ∨ (V ∧W)) ∧ (U ∨X)

27

where U = {V, U,W,X, Y }. This formula denotes an access structure A that

satisfies (contains) the sets of attributes {V, U}, {V,W,X}, {V, U, Y }, etc.,

but does not satisfy the set {U,X} or the set {W,Y }.

To create the share generating matrix A and the row labeling δ we

treat the formula as a binary tree where the nodes are labeled with the gates

and the leaves with the attributes (see Fig. 2.1). The algorithm will assign a

row vector to each node and leaf, starting from the root of the tree. Also, the

algorithm maintains a global counter c initially set to 1. The root is always

labeled with the vector (1). Then the algorithm goes down the tree one gate at

a time. If a node contains an OR (∨) gate and is labeled with the vector ~v, the

algorithm assigns ~v to both of its children nodes, without changing the value

of c. If a node contains an AND (∧) gate and is labeled with the vector ~v, the

algorithm first pads ~v with zeros until it gets length c. The algorithm assigns

the vector ~v|1 to the left child of the node and the vector (0, 0, . . . , 0)|−1 to the

right child, where (0, 0, . . . , 0) is of length c. Finally it updates the value of c

to c+1 and moves on to the remaining nodes. The algorithm terminates when

all leaves are assigned with vectors. The share generating matrix consists of

all the vectors assigned to the leaves padded with zeros to length c. Each row

is labeled in the δ mapping with the attribute of the leaf corresponding to it.

In the above example, the root node has the gate ∧ and is labeled

with the vector (1). Therefore the two children get (1, 1) and (0,−1) and c is

updated to 2. Both of them have ∨ gates, hence the two nodes with ∧ gates

in the right subtree get (1, 1) while the two leaves, U and X get labeled with

28

∧

∨

∧

V U

∧

V W

∨

U X

(1)

(1, 1)

(1, 1)

(1, 1, 1) (0, 0,−1)

(1, 1)

(1, 1, 0, 1)
(0, 0, 0,−1)

(0,−1)

(0,−1) (0,−1)

Figure 2.1: Binary tree and node vectors for the formula F = ((V ∧U)∨ (V ∧
W)) ∧ (U ∨X).

(0,−1). Following the same procedure we reach to the policy (A, δ) shown in

Fig. 2.2. Notice that the vector (1, 0, . . . , 0) is in the span of a set of rows

if and only if the formula F is satisfied by the attributes labeling this set of

rows.

A =


1 1 1 0
0 0 −1 0
1 1 0 1
0 0 0 −1
0 −1 0 0
0 −1 0 0

 δ =


V
U
V
W
U
X


Figure 2.2: Access policy for the formula F = ((V ∧U)∨ (V ∧W))∧ (U ∨X).

29

2.2 Leakage Models

Leakage resilience has been studied in many previous works, under a

variety of leakage models [1, 4, 5, 27–30, 38–46, 59, 61, 63, 77, 80, 93, 94, 107]. In

this section we present the various models ordered from the weakest to the

strongest security notion. Our robust ABE construction of Chap. 5 satisfies

the last one.

Exposure - resilient cryptography The first works in the area

of leakage-resilient cryptography [29, 42, 61] addressed adversaries who could

learn a fixed or variable subset of the bits representing the secret key or internal

state. Obviously the adversary was not allowed to retrieve all the bits of the

secret key, because in that case security was trivially compromised. However

many side-channel attacks leaked complicated functions of the secret key bits

and therefore the interest of the cryptographic community turned to leakage

models where the attacker had access to a polynomially computable function

on the secret key or the internal state of his choice. The following leakage

models consider this kind of leakage.

“Only Computation Leaks” Micali and Reyzin [77] introduced the

assumption that “only computation leaks information”. In other words, one

assumes that leakage occurs every time the cryptographic device performs a

computation, but that any parts of the memory not involved in the computa-

tion do not leak. Under this assumption, leakage-resilient stream ciphers and

signatures have been constructed [45, 46, 94]. Additionally, [54, 60] have shown

how to transform any cryptographic protocol into one that is secure with con-

30

tinual leakage, assuming that only computation leaks information and also

relying on a simple, completely non-leaking hardware device. Continual leak-

age can occur indefinitely and the total amount of leaked bits can be more

than the size of the secret key. This implies that the secret keys of the system

have to be periodically updated and “reset” in some sense the leakage counter.

Bounded Leakage Model Since attacks like the cold-boot attack

[58] can reveal information about memory contents in the absence of compu-

tation, it is desirable to have leakage-resilient constructions that do not rely

upon the above assumption. Several works have accomplished this by bound-

ing the total amount of leakage over the lifetime of the system, an approach

introduced by Naor et al. [80] and Akavia et al. [1]. This has resulted in

constructions of pseudorandom functions, signature schemes, public key en-

cryption, and identity-based encryption [4, 5, 36, 40, 63, 80] which are secure in

the presence of suitably bounded leakage. For IBE schemes in particular, this

means that an attacker can leak a bounded amount of information from only

one secret key per user. This does not allow a user to update/re-randomize

his secret key during the lifetime of the system.

Continual Leakage Model Two subsequent works have achieved

continual leakage resilience without assuming that only computation leaks in-

formation [28, 39]. Dodis, Haralambiev, Lopez-Alt, and Wichs [39] construct

one-way relations, signatures, identification schemes, and authenticated key

agreement protocols which are secure against attackers who can obtain leak-

age between updates of the secret key. It is assumed the leakage between

31

consecutive updates is bounded in terms of a fraction of the secret key size,

and also that there is no leakage during the update process. Brakerski, Kalai,

Katz, and Vaikuntanathan [28] construct signatures, public key encryption

schemes, and (selectively secure) identity-based encryption schemes which are

secure against attackers who can obtain leakage between updates of the secret

key, and also a very limited amount of leakage during updates and during the

initial setup phase. The leakage between updates is bounded in terms of a

fraction of the secret key size, while the leakage during updates and setup is

logarithmically small as a function of the security parameter.

2.3 Overview of Dual System Encryption

Dual System Encryption is a proof methodology introduced in [111] and

used to provide adaptively secure IBE, HIBE, and ABE systems. Our work in

[71] was the first to leverage this methodology to achieve leakage resilience for

all these functionalities and, at the same time, maintain full security for the

proposed schemes. The ABE system of this work is described in Chap. 5. In

this section we describe the framework of dual system encryption and describe

the intuition behind the security of our robust construction.

Adaptive Security of ABE Systems The formal definition of adap-

tive (or full) security of ABE systems is given in Chap. 4. For the purpose of

describing the dual system framework and the obstacles it tries to solve, we will

briefly describe the security definition of CP-ABE schemes. The main ideas

and challenges in the KP-ABE setting are similar. CP-ABE security is defined

32

via a game between a challenger and an attacker. This game is a conservative

model of the real world interactions between an eavesdropper and the users of

the cryptographic scheme. The eavesdropper gets the public parameters of the

scheme and can impersonate or compromise a set of users by acquiring their

secret keys. We want to design the scheme in such a way that even in that case

the eavesdropper can not get any information from a ciphertext of a different

user. It is considered conservative since we give the attacker the possibility

to choose adaptively the compromised users, the encrypted messages, and the

challenge user.

More specifically the game works as follows: Initially, the challenger sets

up the CP-ABE system and provides the public parameters to the attacker.

Then the attacker can request a polynomial number of secret keys for various

attribute sets. The attacker may choose these sets any way it wishes and it can

do that in a fully adaptive fashion. That is, each of his choices may depend on

the previous ones and the previously acquired secret keys. At some point, the

attacker declares it wants to go into the challenge phase where it outputs a pair

of messages of equal length and an access policy. As before it can choose both

these challenge messages and the challenge access policy any way it wants

with the only restriction that the access policy must not be satisfied by any

of the attribute sets of the keys selected so far. Then the challenger flips a

uniformly random bit and, depending on the value of the bit, it encrypts either

the first or the second challenge message under the challenge access policy with

the set public parameters and sends the challenge ciphertext to the attacker.

33

The attacker can then go into a second secret-key query phase, where it can

request adaptively additional secret keys with the same restriction; that their

attribute sets do not satisfy the access policy. Finally, it tries to guess the

message encrypted in the challenge ciphertext and outputs a bit to signify its

answer. We say that a scheme is secure when for all polynomial time attackers

the probability of guessing correctly is negligibly close to 1/2. Security is

proved formally via a security reduction, where we assume the existence of an

attacker in the above game and define a simulator algorithm that simulates

the challenger of the game and breaks a hard computational problem.

Notice that the restriction imposed on the queried keys ensures that the

attacker can not decrypt the challenge ciphertext with any of these keys, since

they correspond to non-authorized attribute sets. However, it can be the case

that the union of attribute sets of two or more secret keys is an authorized

set. This implies that our schemes should be resilient to the so-called collusion

attacks, where several users combine somehow their secret keys in order to

decrypt a ciphertext for which neither of them is individually authorized to

decrypt. Therefore in a secure CP-ABE scheme the attributes should not be

transferable among users. Security against collusion attacks was one of the

first challenges of the (non-adaptive) ABE constructions and could be solved

with careful personalization of the users’ secret keys.

An additional obstacle however is present in the adaptive setting: The

simulator of our reduction has to be ready to construct a secret key for any

attribute set requested by the attacker and a ciphertext for any challenge

34

access policy. Since the simulator also tries to leverage the attacker’s success

to solve the hard computational problem, it looks like it does not need the

attacker’s help. It can create a secret key that decrypts the challenge ciphertext

and attack the scheme by itself. Since this appears to be impossible to achieve

(unless the simulator knows the challenge access policy at the beginning of the

game, as in the non-adaptive setting), dual system encryption aims in proving

that the success probability of any PPT attacker in the above security game

is negligibly close to the success probability of the same attacker in a game

where the challenger outputs “non-working” keys; thus bypassing the above

paradox. In the following paragraphs we describe how dual system encryption

achieves that and how it allows to achieve leakage resilience in ABE schemes.

Normal and Semi-functional Components In a dual system en-

cryption system the keys and the ciphertexts come in two flavors; either normal

or semi-functional. The normal keys and ciphertexts are utilized by the users

of the deployed system to decrypt and encrypt messages. The semi-functional

components appear only in the security proofs of the schemes. An authorized

normal key can decrypt a semifunctional ciphertext and a normal ciphertext

can be decrypted by an authorized semi-functional key. By authorized we

mean that the attribute set (of the key in CP-ABE or of the ciphertext in

KP-ABE) is one of the authorized sets of the access policy (of the ciphertext

in CP-ABE or of the key in KP-ABE). However when a semi-functional key is

used to decrypt a semi-functional ciphertext decryption fails (with very high

probability) even if the key is authorized.

35

The proof of security works by providing a sequence of games starting

with the real security game where all keys and ciphertexts are normal and

ending with the same game but with all keys and ciphertexts semi-functional.

It is proved that the advantage of any PPT attacker in any of the games is

negligibly close to its advantage of the next game. The second game in the

sequence is one where the challenge ciphertext is semi-functional and all keys

are normal. Then if the adversary makes at most Q secret key queries, there

are Q subsequent games. In the i-th game the first i secret keys are semi-

functional while the remaining keys are normal. In the final game all keys and

the challenge ciphertext are semi-functional and therefore security can proved

relatively easy, since the simulator outputs only “useless” keys.

Nominal Semi-functionality However, the aforementioned para-

dox that the simulator can construct a secret key that can decrypt the cipher-

text seems now to have been moved to the transitions of the security games.

Namely, the point where a simulator creates a secret key, let’s say the i-th one,

that is either normal or semi-functional in order to advance from the (i−1)-th

game to the i-th. It is crucial that it does not know which form of secret key

it created, because otherwise it wouldn’t have to leverage the attacker. But

since we are in the adaptive setting, the simulator can create a secret key,

which is authorized for the semi-functional ciphertext and should be either

semi-functional or normal, but unknown to it. The question is if the simulator

tries to decrypt the challenge ciphertext with this key wouldn’t it detect its

nature?

36

The above issue is resolved by introducing the notion of nominal semi-

functionality. A secret key is nominally semi-functional with respect to a semi-

functional ciphertext if it is semi-functional, authorized for this ciphertext,

and correlated to it in such a way that decryption succeeds. More specifically

the random coins used for the creation of the secret key is correlated to the

random coins used for the creation of the ciphertext and during decryption

the semi-functional components of both cancel each other out. If the random

coins were not correlated we would have a regular semi-functional key and

then decryption would fail. In the case where our simulator tries to create

the aforementioned secret key, the system and the reduction are set in such a

way that it will either create a normal secret key or a nominal semi-functional

key. Thus if it tries to decrypt the ciphertext and detect the nature of the

key, decryption will succeed unconditionally providing no information about

the nature of the key.

As it is implied by the previous paragraph, the randomness of some

secret keys created by the simulator is correlated to the randomness of the

challenge ciphertext. However the secret keys should be created using prop-

erly generated random coins. In the first dual system encryption schemes this

obstacle was by-passed using the fact that the attacker can not request an au-

thorized key. The fact that the keys could not decrypt the challenge ciphertext

regardless of being normal or semi-functional was enough to hide information

theoretically the aforementioned correlation by the attacker. However this was

not true anymore for the leakage resilient setting.

37

Leakage Resilient Semi-functionality In the leakage resilient secu-

rity game the attacker is given the ability to request “leakage” from secret keys

keys of its own choice, even from authorized ones. Namely, the above game is

modified such that the attacker is allowed to send several polynomially com-

putable functions to its challenger before seeing the challenge ciphertext. Each

time the challenger applies the function on a secret key of the attacker’s choice

and returns the result to the attacker. We require that the size of the output

of the function is strictly smaller than the size of the entire key. Otherwise the

attacker would be able to use the secret key to decrypt the challenge ciphertext

and the security notion would be impossible to achieve. For our construction

we utilized the strongest leakage-resilient security notion, i.e. the continual

leakage model. In this model the attacker can request a bounded amount of

leakage from each key, but can also request that a specific key is updated to

a new one and essentially “reset” the leakage counter on it. We note that no

leakage queries are allowed after the challenge phase, because in this case it is

impossible to achieve security as the attacker can pick as the leakage function

the decryption of the challenge ciphertext. Formally the definition of leakage

resilient security is presented in Chap. 4.

Getting back to the dual system encryption framework, we see that we

can not use past techniques to hide the nominality of the secret keys we give

to the attacker. More specifically we can not hide with these techniques the

nominality of the secret keys that are authorized to decrypt the ciphertext,

but are leaked to the attacker. In our work [71], we presented the first tech-

38

nique that hid information theoretically the correlation of these secret keys

with the challenge ciphertext and achieved a fully secure ABE scheme. Our

technique used an information theoretic lemma introduced in [28] stating that

“random subspaces are leakage resilient”. The authors of [28] showed how to

create selectively secure leakage resilient IBE, HIBE, and ABEschemes (in the

continual leakage model) by straight-forwardly utilizing this lemma.

The main idea of our work was to use dual system encryption, that

was known to provide fully secure schemes, to achieve the orthogonal goal of

leakage-resilience, as well. We build the keys and ciphertexts in such a way

that the two semi-functional components were nominally semi-functional to

each other if and only if specific vectors of their semi-functional space were

orthogonal to each other. Therefore they were nominal if and only if a vector

belonged to the orthogonal subspace of another one. According to the afore-

mentioned lemma this correlation was hidden by the view of the attacker and

the advantage it could acquire out of this correlation was only negligible.

In addition, we introduced secret key update algorithms and trans-

formed the master secret key of our construction to have a similar form as

the regular secret keys. As a result we achieved continual leakage and leakage

resilience against master secret key attacks. The final scheme was fully (adap-

tively) secure and resilient against master or user secret key leakage attacks in

the continual leakage model.

39

CHAPTER 3

Bilinear Groups

In this chapter we introduce the primitive components of our cryptographic

constructions: the bilinear groups. In the first three sections we present the

abstract mathematical properties of these groups and the assumptions we re-

quire that they satisfy, in order to prove the security of our schemes. In the

fourth section we present explicit implementations of these groups using ellip-

tic curves and we pinpoint the differences from the abstracted objects.

The main feature of bilinear groups is that they admit an efficiently

computable mapping that takes two group elements and maps them to another

group, called the target group. This mapping should be non-degenerate, i.e.

it does not map everything to the identity element of the target group, and

it should be linear on both of its arguments. Bilinear groups opened the

way to numerous cryptographic primitives, such as identity-base encryption

[20], three-party key agreement, hierarchical identity based encryption and

40

numerous others.

In this thesis we will be concerned with bilinear groups of prime and

composite order. The former are simpler and more efficient, but lack the nec-

essary structure to facilitate proofs of adaptive security. The properties of the

latter provide increased flexibility in proving the security of various schemes,

but the actual implementations of them are significantly slower than the ones

of prime order groups on the same security level. This reason has motivated

several researchers to implement the functionality and the properties of com-

posite order groups using prime order groups [47, 70]. Although these works

provided constructions that simulate the structure of composite order groups

and achieved a significant efficiency improvement with respect to them, they

are still several factors slower than the prime order group implementations.

These factors, as well as the exact simulation, depends on the application at

hand.

3.1 Abstract Properties of Bilinear Groups

In this section we present the abstract properties of the groups used by

our schemes and implementations. Throughout the thesis we use multiplicative

notation for the group operation.

3.1.1 Prime Order Bilinear Groups

Let G and GT denote cyclic groups of the same prime order p, where

‖p‖ = λ ∈ N. We say that the tuple (p, g,G,GT , e) is a bilinear group tuple if

41

g is a generator of G and there exists a mapping e : G×G→ GT that satisfies

the following properties:

1. Efficiently computable: It can be computed in polynomial time in λ.

2. Non-degenerate: It is true that e(g, g) 6= 1GT . As a result, e(g, g) is a

generator of GT .

3. Bilinear: For all all a, b ∈ Zp, it is true that e(ga, gb) = e(g, g)ab.

For our assumptions and constructions we assume that there exists a

probabilistic polynomial time group generator algorithm G(1λ) that takes as

input the security parameter λ encoded in unary and outputs (a description

of) a bilinear group tuple (p, g,G,GT , e) with ‖p‖ = λ.

Remark 3.1. The above definition encompasses the so called symmetric bi-

linear groups. These are the only groups that we consider in our construc-

tions and our security proofs. In general the mapping can be asymmetric,

i.e. e : G × H → GT , where G,H,GT are all groups of prime order p. All

our assumptions, constructions, and security proofs can be generically trans-

formed to the asymmetric setting by substituting all terms of the form ga ∈ G

with terms ga ∈ G and ha ∈ H, where g, h are generators of the groups G,H

respectively.

3.1.2 Composite Order Bilinear Groups

Another very useful tool for the construction of cryptographic primi-

tives is the relaxation of the above definition such that the groups G and GT are

42

of composite order. In this case we will denote the order by N = |G| = |GT |.

For our constructions N will be the product of three prime numbers

p1, p2 and p3. According to Lagrange’s theorem this implies that G (and GT)

contains three prime order subgroups. We will denote the subgroups of order

p1, p2, and p3 by G1, G2, and G3, respectively.

Suppose that g ∈ G is a generator of the full group G, i.e. it has order

N = p1p2p3. Then a generator of the i-th subgroup is equal to

gi = g
∏
j∈[3] p

1−δi,j
j

where δi,j = 0 for i 6= j and δi,j = 1 for i = j; the Kronecker’s delta. Thus,

the generator of the i-th subgroup is obtained by raising the generator of the

entire group G to the exponent N/pi. For example, a generator of the G1

subgroup is g1 = gp2p3 .

An important property of the composite order bilinear groups, called

orthogonality, is that pairing group elements from different subgroups always

outputs the identity element of the target group. To see this, consider pairing

an element A ∈ Gi to an element B ∈ Gi′ , with i, i′ ∈ [3] and i 6= i′. Since

gi and gi′ are the respective generators, we have that A = gai and B = gbi′ for

some a ∈ Zpi and b ∈ Zpi′ . Then according to the properties of the pairing

43

operation we have:

e(A,B) = e(gai , g
b
i′) = e(ga

∏
j∈[3] p

1−δi,j
j , g

b
∏
j′∈[3] p

1−δi′,j′
j′)

= e(g, g)ab·
∏
j∈[3] p

2−δi,j−δi′,j
j

= e(g, g)p1p2p3·ab·
∏
j∈[3] p

1−δi,j−δi′,j
j

= (e(g, g)p1p2p3)ab·
∏
j∈[3] p

1−δi,j−δi′,j
j

= 1
ab·

∏
j∈[3] p

1−δi,j−δi′,j
j

GT = 1GT

As it was the case for the prime order groups, we assume that there

exists a probabilistic polynomial time group generator algorithm G(1λ) that

takes as input the security parameter λ encoded in unary and outputs (a

description of) a bilinear group tuple (N, p1, p2, p3, g,G,GT , e) with ‖pi‖ = λ

for all i ∈ [3].

3.2 Computational Assumptions

In this section we present the computational assumptions which we

utilize to prove the security of our schemes. First, we present three q-type

assumptions on prime order groups needed for the security proofs of our large

universe ABE schemes of Chap. 6. Afterwards we present three subgroup

decision assumptions on composite order groups used in the security reductions

of the leakage-resilient ABE construction of Chap. 5.

All assumptions are defined via a security game between a challenger C

and an attacker A, both modeled as probabilistic interactive Turing machines.

44

The challenger does not necessarily have to be efficient (polynomial time),

although in our implementations and schemes this happens to be the case. On

the other hand, we consider only polynomial time attackers for our security

definitions.

In each security game the challenger C generates a set of given terms

denoted by the D tuple, and two challenge terms denoted by T0 and T1. The

distributions of D,T0, T1 are defined by the assumption at hand, which in this

abstract example we denote by GenAss. Then C flips a uniformly random bit

b
R← {0, 1} and the attacker A is given (D,Tb). The goal of A is to correctly

guess the bit b, i.e. it outputs a bit b′ ∈ {0, 1}. The success of the attacker is

quantified by its advantage which is defined as

AdvGenAssA (λ) ..= |2 · Pr [b′ = b]− 1|

= |Pr [A(D,T1) = 1]− Pr [A(D,T0) = 1]|

3.2.1 Three q-Type Assumptions on Prime Order Groups

The three assumptions on prime order groups are similar to the q-

Decisional Parallel Bilinear Diffie-Hellman Exponent assumption introduced in

[112]. They are all q-type assumptions, meaning that they are parameterized

by an integer q, polynomial in the security parameter λ. We will be referring to

them as q-DPBDH1, q-DPBDH2, and q-DPBDH3, and we will use them in the

security proofs of our unbounded KP-ABE scheme, our unbounded CP-ABE

scheme, and our unbounded multi-authority CP-ABE scheme, respectively.

The original q-Decisional Parallel Bilinear Diffie-Hellman Exponent assump-

45

tion, denoted by q-DPBDH, is almost the same as the q-DPBDH3 assumption

and for completeness it is described as the delta of q-DPBDH3 (see Rem. 3.6).

The generic security of all these computational assumptions is shown in ap-

pendix A.

We remind the reader that, for all assumptions, we require the existence

of a group generator algorithm G that gets a security parameter 1λ as input and

produces a description of a prime order bilinear group (see Sec. 3.1.1). This

algorithm outputs a tuple (p, g,G,GT , e) and is called by the challenger at the

beginning of the following security games. Also we remind that the notation

[q, q] or [q, q, 2q] denotes the set of integer pairs [q] × [q] or [q] × [q] × [2q],

respectively.

The q-DPBDH1 Assumption

After the challenger C calls the group generation algorithm G
(
1λ
)
→

(p, g,G,GT , e), it picks q+3 random exponents x, y, z, b1, b2, . . . , bq
R← Zp. The

given tuple D consists of the group description (p, g,G,GT , e) and all of the

following terms:

g, gx, gy, gz, g(xz)2

gbi , gxzbi , gxz/bi , gx
2zbi , gy/b

2
i , gy

2/b2i ∀i ∈ [q]

gxzbi/bj , gybi/b
2
j , gxyzbi/bj , g(xz)2bi/bj ∀(i, j) ∈ [q, q] with i 6= j

The challenge terms are

T0 = e(g, g)xyz and T1 = R
R← GT

46

Definition 3.2. We say that the q-DPBDH1 assumption holds if for all PPT

attackers A it is true that Advq-DPBDH1
A (λ) ≤ negl(λ).

The q-DPBDH2 Assumption

After the challenger C calls the group generation algorithm G
(
1λ
)
→

(p, g,G,GT , e), it picks q + 2 random exponents a, s, b1, b2, . . . , bq
R← Zp. The

given tuple D consists of the group description (p, g,G,GT , e) and all of the

following terms:

g, gs

ga
i
, gbj , gsbj , ga

ibj , ga
i/b2j ∀(i, j) ∈ [q, q]

ga
i/bj ∀(i, j) ∈ [2q, q] with i 6= q + 1

g
aibj/b

2
j′ ∀(i, j, j′) ∈ [2q, q, q] with j 6= j′

gsa
ibj/bj′ , g

saibj/b
2
j′ ∀(i, j, j′) ∈ [q, q, q] with j 6= j′

The challenge terms are

T0 = e(g, g)sa
q+1

and T1 = R
R← GT

Definition 3.3. We say that the q-DPBDH2 assumption holds if for all PPT

attackers A it is true that Advq-DPBDH2
A (λ) ≤ negl(λ).

Remark 3.4. Notice the absence of the term ga
q+1/bj in the third line of the

assumption. If this term were given to the attacker, then he could break the

assumption trivially by pairing it with the corresponding gsbj term. On the

other hand, the term g
aq+1bj/b

2
j′ is given, and this poses no problems in the

generic group model since j 6= j′ and by possible pairing the adversary cannot

get rid of the bj’s. See appendix A for further details.

47

The q-DPBDH3 Assumption

After the challenger C calls the group generation algorithm G
(
1λ
)
→

(p, g,G,GT , e), it picks q + 2 random exponents s, a, b1, b2, . . . , bq
R← Zp. The

given tuple D consists of the group description (p, g,G,GT , e) and all of the

following terms:

g, gs

ga
i
, gbja

i ∀(i, j) ∈ [2q, q] with i 6= q + 1

gs/bi ∀i ∈ [q]

gsa
ibj/bj′ ∀(i, j, j′) ∈ [q + 1, q, q] with j 6= j′

The challenge terms are

T0 = e(g, g)sa
q+1

and T1 = R
R← GT

Definition 3.5. We say that the q-DPBDH3 assumption holds if for all PPT

attackers A it is true that Advq-DPBDH3
A (λ) ≤ negl(λ).

Remark 3.6. The q-DPBDH assumption is the same as the q-DPBDH3 with

the only difference that the {gsaibj/bj′} terms can not have i = q + 1.

3.2.2 Three Subgroup Decision Assumptions on Composite Order
Groups

To prove the security of our leakage-resilient construction of Chap. 5,

we will use the following three assumptions in composite order groups, also

used in [68, 72]. These are static assumptions, which hold in the generic group

model if finding a nontrivial factor of the group order is hard. The proof of

this can be found in [72].

48

The first two of our assumptions belong to the class of the Source Group

Subgroup Decision Assumptions described in [10]. This class of assumptions

is defined as follows: in a bilinear group of order N = p1p2 . . . pn, there is a

subgroup of order
∏

i∈S pi for each subset S ⊆ {1, . . . , n}. We let S0, S1 denote

two subsets. It is assumed to be hard to distinguish a random element from the

subgroup associated with S0 from a random element of the subgroup associated

with S1, even if one is given random elements from subgroups associated with

several subsets Zi which each satisfy either that S0 ∩ Zi = ∅ = S1 ∩ Zi or

S0 ∩ Zi 6= ∅ 6= S1 ∩ Zi. Note that when S0 ∩ Zi = ∅ = S1 ∩ Zi, pairing the

random element from Zi with the unknown element under the bilinear map

will always yield the identity element, while when S0 ∩ Zi 6= ∅ 6= S1 ∩ Zi,

pairing the random element from Zi with the unknown element will not yield

the identity element in either case. The third assumption is of similar flavor

but the two target terms reside in the target group.

We remind the reader that, for all assumptions, we require the existence

of a group generator algorithm G that gets a security parameter 1λ as input

and produces a description of a composite order bilinear group. That is, it

outputs three primes p1, p2, p3, two groups G,GT of order N = p1p2p3, a map

e : G × G → GT with the above properties, and three generators g1, g2, g3 of

subgroups G1,G2,G3, respectively. We also require that e is polynomial-time

computable with respect to λ.

We will denote the three assumptions on the composite order groups

by Comp1, Comp2, and Comp2. They are the following:

49

The Comp1 Assumption

Given D = (N,G,GT , e, g1, g3) (notice that not all outputs of G are

given), no PPT adversary has a non-negligible advantage in distinguishing

T0 = gz1 from T1 = gz1g
ν
2 ,

where z, ν
R← ZN .

Definition 3.7. We say that the Comp1 assumption holds if for all PPT

attackers A it is true that AdvComp1
A (λ) ≤ negl(λ).

The Comp2 Assumption

Given D = (N,G,GT , e, g1, g3, g
z
1g

ν
2 , g

µ
2 g

ρ
3), where z, ν, µ, ρ

R← ZN , no

PPT adversary has a non-negligible advantage in distinguishing

T0 = gw1 g
σ
3 from T1 = gw1 g

κ
2g

σ
3 ,

where w, κ, σ
R← ZN .

Definition 3.8. We say that the Comp2 assumption holds if for all PPT

attackers A it is tru that AdvComp2
A (λ) ≤ negl(λ).

The Comp3 Assumption

Given D = (N,G,GT , e, g1, g2, g3, g
α
1 g

ν
2 , g

z
1g

µ
2), where α, ν, z, µ

R← ZN ,

no PPT adversary has a non-negligible advantage in distinguishing

T0 = e(g1, g1)αz ∈ GT from T1
R← GT .

50

Definition 3.9. We say that the Comp3 assumption holds if for all PPT

attackers A it is true that AdvComp2
A (λ) ≤ negl(λ).

3.3 Implementation of Bilinear Groups using Elliptic
Curves

This section is a short introduction to the theory of elliptic curves and

their use in implementing bilinear pairing groups. We give a high level overview

of the elliptic curves over finite fields and the pairing operations on them. For

more information the reader is referred to [14, 15, 108].

3.3.1 Elliptic Curves

An elliptic curve E defined over a field F contains the set of points of

the equation

y2 = x3 + Ax+B

where A and B are constants in F. The coordinates of the points can belong

possibly to an extension field L ⊇ F. The set of points of the curve also

includes a special point denoted by∞. Formally, the elliptic curve group with

points in the field L is defined as

E(L) = {∞} ∪
{

(x, y) ∈ L× L|y2 = x3 + Ax+B
}

A special “addition” operation is defined over the points of each elliptic

curve. We will not go into the details or the definition of addition on elliptic

curves, since we treat it as a black box operation with specific properties.

51

When the underlying field L is the field of the real numbers R, the addition

of two points P1, P2 ∈ E(R) is defined as the symmetric point P3 = (x3, y3)

with respect to the x-axis of the intersection point −P3 = (x3,−y3) of the

straight line through P1 and P2 with the graph of the elliptic curve. The

important property of any elliptic curve is that the points of E(L) with the

addition operation form an abelian group with∞ as the identity element. For

our constructions, we will denote this operation by the multiplicative sign ·

which is more common in the cryptographic community. For clarity with our

multiplicative notation we denote the ∞ point as 1,1G, etc. However in this

section only we follow the additive notation for points of elliptic curves and

the definition of pairings.

In cryptography we are interested only in elliptic curve groups with

points in finite fields Fq. These are fields of order q = pn, where p is a prime

number and n a positive integer. Since there is only a finite number of possible

pairs (x, y) ∈ Fq×Fq, we know that the number of points in E(Fq) is finite and

therefore it is a finite abelian group. For finite elliptic curve groups there is

no geometric intuition for the group operation but the formulas are the same

as the case for R.

3.3.2 Tate-Lichtenbaum Pairing over Finite Fields

In this section we introduce the modified Tate-Lichtenbaum pairing

operation on elliptic curves of finite order. This is commonly used in applica-

tions of elliptic curves to cryptography, since it has several properties useful for

52

simplifying the various implementations. However, the first pairing operation

used for cryptographic application [21] was the Weil pairing.

Let Fq be a finite field of order q and E be an elliptic curve defined

over Fq. Let r be a positive integer coprime to q which divides the order of

E(Fq). Let µr =
{
x ∈ F∗q|xr = 1

}
, i.e. the set of the r-th roots of unity in the

algebraic closure of Fq. Then the field K = Fq(µr) is some finite extension Fqk .

The number k is called the embedding degree of the elliptic curve and it is the

smallest positive integer such that r divides (qk − 1).

Let E(Fqk)[r] be the set of points in E(Fqk) of order r. Formally,

E(Fqk)[r] =
{
P ∈ E(Fqk)|rP =∞

}
The modified Tate-Lichtenbaum pairing is an efficiently computable

binary operation

τr : E(Fqk)[r]× E(Fqk)/rE(Fqk)→ µr

The first argument of the pairing is an element of the group E(Fqk)[r],

while the second argument is an element of the group of the equivalence classes

E(Fqk)/rE(Fqk). Both groups have size r. The equivalence relation defining

the classes of the second group acts on two points P1, P2 ∈ E(Fqk) and P1 ≡ P2

if and only if P1 − P2 ∈ rE(Fqk). The Tate-Lichtenbaum pairing satisfies the

properties required in Sec. 3.1.1 adapted to the asymmetric group case, where

G, H, GT are cyclic groups and G ⊆ E(Fqk)[r], H ⊆ E(Fqk)/rE(Fqk), and

GT ⊆ µr.

53

3.3.3 Supersingular Curves and Distortion Maps

An important class of elliptic curves with many applications in pairing

based cryptography is the so called supersingular curves. An elliptic curve

E over the field Fq, where q is a power of a prime p, is called supersingular

if the order of E(Fq) is congruent to 1 modulo p, i.e. |E(Fq)| ≡ 1 (mod p).

For points on these curves there exists at least one efficiently computable

endomorphism on E that maps a point of E(Fq) to a point in E(Fqk) called

distortion map.

More specifically let P be a point in E(Fq) with prime order r. There-

fore P ∈ E(Fqk)[r]. Suppose the embedding degree k is greater than 1 and

E(Fqk) has no points of order r2. Let φ be an endomorphism of E. It can be

proved that if φ(P) /∈ E(Fq), then τr(P, φ(P)) 6= 1.

The existence of the above distortion map φ allows as to consider sym-

metric bilinear groups where of order r. If we restrict the pairing to a single

cyclic subgroup of the elliptic curve, it can be proved that τr(Q, φ(P)) =

τr(P, φ(Q)) for any two points P,Q in the cyclic subgroup. As a result the

pairing defined as e(P,Q) ..= τr(P, φ(Q)) is symmetric. In the Table 3.1 you

can see the parameters and the distortion maps of the two types of supersin-

gular elliptic curves used in this thesis.

3.3.4 Prime vs Composite Order Group Operations

In order to demonstrate the generic difference in the efficiency of prime

order vs composite order implementations, we timed the group exponentiation

54

Curve Fq k |E(Fq)| Distortion map

y2 = x3 + a q ≡ 2 (mod 3) 2 q + 1 (x, y) 7→ (ζ3x, y)
y2 = x3 + x q ≡ 3 (mod 4) 2 q + 1 (x, y) 7→ (−x, iy)

Table 3.1: Two types of supersingular elliptic curves. These are curves over
the field Fq where q satisfies the stated restrictions and k is the embedding
degree. ζ3 is a cubic root of unity in Fq, while i is the imaginary element such
that i2 = −1 in Fq.

(of a random group element with a random exponent) and pairing operations

(on random group elements) in the MIRACL framework [31] for different se-

curity levels. The benchmarks were executed on a dual core Intel R© Xeon R©

CPU W3503@2.40GHz with 2.0GB RAM running Ubuntu R10.04. The ellip-

tic curve utilized for all benchmarks was the super-singular (symmetric) curve

y2 = x3 + 1 mod p with embedding degree 2 for suitable primes p.

In table 3.2 we can see the significant gap between the timings in prime

and composite order groups for the same security levels. This is the main

reason that we tried to utilize prime order groups for our construction.

55

Group exponentiation
Security Level (Bits) Prime Prod. of 2 primes Prod. of 3 primes

80 3.5 66.9 201.6
112 14.8 448.1 1404.3
128 34.4 1402.5 4512.5
192 273.8 20097.0 66526.0

Pairing
Security Level (Bits) Prime Prod. of 2 primes Prod. of 3 primes

80 13.9 245.3 762.3
112 65.7 1706.8 5485.2
128 176.6 5428.2 17494.4
192 1752.3 79046.8 263538.1

Table 3.2: Average timing results in milliseconds over 100 repeats of group
exponentiations and pairings in MIRACL.

56

CHAPTER 4

Identity and Attribute-Based Encryption

Systems

In this chapter we present the formal definitions for identity and attribute-

based encryption systems. The former serve as an essential stepping stone

toward the latter, as it was the case for our leakage-resilient ABE construction

of Chap. 5.

4.1 IBE Definition

An Identity-Based Encryption (IBE) system (first introduced in [100])

is a public key cryptosystem which allows users to encrypt knowing only the

recipient’s identity and some public parameters of the systems (this means

that individual public keys are not needed). Formally, an IBE scheme consists

of four PPT algorithms. In order to allow leakage on many master keys, we

extend the functionality of the usual key generation algorithm by allowing it

57

to take the empty string, denoted by ε, as input.

Setup(1λ) → (PP,MSK) The setup algorithm takes an integer secu-

rity parameter, λ, as input and outputs the public parameters, PP, and the

original master key, MSK. The remaining algorithms take implicitly the secu-

rity parameter and the public parameters as inputs. The security parameter

is encoded in unary, so that all algorithms run in polynomial time in λ.

KeyGen(MSK′, X)→ K The key generation algorithm takes in a mas-

ter key, MSK′, and either X = ID, an identity, or X = ε, the empty string1.

In the former case, it outputs a secret key, K = SK, for the identity ID.

In the latter case, it outputs another master key, K = MSK′′, such that

‖MSK′′‖ = ‖MSK′‖ 2. This new master key can now be used instead of the

original key in calls of Keygen (either with ID or with ε as input).

Encrypt(M, ID)→ CT The encryption algorithm takes in a message,

M , and an identity, ID, and outputs a ciphertext, CT.

Decrypt(CT, SK) → M The decryption algorithm takes in a cipher-

text, CT, and a secret key, SK. It outputs a message M .

The correctness requirement is that if the identity ID used during

encryption is the same as the identity of the secret key used during decryption,

then the output of Decrypt is the encrypted message M . That is, for all

1This is not the standard definition of KeyGen in IBE systems. We augmented it to
accept the empty string in order to work as an update algorithm for the master key and
eventually achieve security in the Continual Leakage Model (see Section).

2This restriction prevents expansion of the master key.

58

MSK,PP generated by a call to Setup for all master keys MSK′ generated

by applying the KeyGen algorithm with the empty string and a previously

generated master key, and for all M, ID

Decrypt(Encrypt(M, ID),KeyGen(MSK′, ID)) = M

4.1.1 Dual System IBE

As noted in Sec. 2.3 a dual system encryption system admits semi-

functional secret keys and ciphertexts along with the normal components.

Therefore it consists of two additional algorithms:

KeyGenSf(MSK′, X) → K̃ The semi-functional key generation algo-

rithm takes in a normal master key, MSK′, and either X = ID, an identity,

or X = ε, the empty string. In the former case, it outputs a semi-functional

secret key, K̃ = S̃K, for the identity ID. In the latter case, it outputs a semi-

functional master key, K̃ = ˜MSK
′′
. Notice that the master key used as input

to the algorithm is always normal.

EncryptSf(M, ID) → C̃T The encryption algorithm takes in a mes-

sage, M , and an identity, ID, and outputs a semi-functional ciphertext, CT.

4.2 ABE Definitions

In this section we present the formal definitions of the different notions

of attribute-based encryption systems. For simplicity of notation, we do not

include the security parameter λ as input to the algorithms, except Setup and

59

GlobalSetup. We assume that it is implicitly included in the (global) public

parameters.

4.2.1 Ciphertext-Policy ABE

A ciphertext-policy attribute-based encryption scheme consists of the

following four PPT algorithms:

Setup
(
1λ,U

) R→ (PP,MSK): The Setup algorithm takes as inputs the

security parameter λ ∈ N encoded in unary and a description of the attribute

universe U 3. It outputs the public parameters PP and the master secret key

MSK.

KeyGen (PP,MSK,S)
R→ SK: The key generation algorithm takes as

inputs the public parameters PP, the master secret key MSK and a set of

attributes S ⊆ U . The algorithm generates a secret key corresponding to S.

Encrypt (PP,M,A)
R→ CT: The encryption algorithm takes as inputs

the public parameters PP, a plaintext message M , and an access structure A

on U . It outputs the ciphertext CT.

Decrypt (PP, SK,CT) → {M,⊥}: The deterministic decryption al-

gorithm takes as inputs the public parameters PP, a secret key SK, and a

ciphertext CT. It outputs either the plaintext M , when the collection of at-

tributes satisfies the access structure of the ciphertext, or ⊥ when decryption

fails.

3See Sec. 4.2.4 for more information on the description of the attribute universe.

60

Correctness: We require that a CP-ABE scheme is correct, i.e the

decryption algorithm correctly decrypts a ciphertext of an access structure A

with a secret key on Swhen S is an authorized set of A. Formally:

Definition 4.1. A CP-ABE scheme is correct when for all messages M , and

all attribute sets S and access structures A with S ∈ A (i.e. for S authorized):

Pr

Decrypt (PP, SK,CT) 6= M

∣∣∣∣∣∣∣
(PP,MSK)

R← Setup
(
1λ
)

SK
R← KeyGen (PP,MSK,S)

CT
R← Encrypt (PP,M,A)

 ≤ negl(λ)

where the probability is taken over all random coins of all algorithms.

As noted in Sec. 2.3, in case the ABE scheme is of the dual system

encryption type it also consists of the following two semi functional algorithms:

KeyGenSf (PP,MSK,S)
R→ SK: The key generation algorithm takes

as inputs the public parameters PP, a normal master secret key MSK and a

set of attributes S ⊆ U . The algorithm generates a semi-functional secret key

corresponding to S.

EncryptSf (PP,M,A)
R→ CT: The encryption algorithm takes as in-

puts the public parameters PP, a plaintext message M , and an access structure

A on U . It outputs the semi-functional ciphertext CT.

4.2.2 Key-Policy ABE

The only difference between a key-policy and a ciphertext-policy ABE

scheme is that the roles of the keys and the ciphertexts with respect to the

61

policies and the attribute sets are reversed. In the KP-ABE case each key

is tied to a policy instead of an attribute set. A key-policy attribute-based

encryption scheme consists of the following four PPT algorithms:

Setup(1λ,U)
R→ (PP,MSK): The Setup algorithm takes as inputs the

security parameter λ ∈ N encoded in unary and a description of the attribute

universe U 3. It outputs the public parameters PP and the master secret key

MSK.

KeyGen(PP,MSK,A)
R→ SK: The key generation algorithm takes as

inputs the public parameters PP, the master secret key MSK and an access

structure A on U . The algorithm generates a secret key corresponding to A.

Encrypt(PP,M,S)
R→ CT: The encryption algorithm takes as inputs

the public parameters PP, a plaintext message M , and a set of attributes

S ⊆ U . It outputs the ciphertext CT.

Decrypt(PP, SK,CT) → {M,⊥}: The deterministic decryption al-

gorithm takes as inputs the public parameters PP, a secret key SK, and a

ciphertext CT. It outputs either the plaintext M , when the collection of at-

tributes satisfies the access structure of the ciphertext, or ⊥ when decryption

fails.

Correctness: We require that a KP-ABE scheme is correct, i.e the

decryption algorithm correctly decrypts a ciphertext on S with a secret key of

an access structure A when S is an authorized set of A. Formally:

Definition 4.2. A KP-ABE scheme is correct when for all messages M , and

62

all attribute sets S and access structures A with S ∈ A (i.e. for S authorized):

Pr

Decrypt(PP, SK,CT) 6= M

∣∣∣∣∣∣∣
(PP,MSK)

R← Setup(1λ)

SK
R← KeyGen(PP,MSK,A)

CT
R← Encrypt(PP,M,S)

 ≤ neglλ

where the probability is taken over all random coins of all algorithms.

4.2.3 Multi-Authority ABE

A multi-authority ciphertext-policy attribute-based encryption system

consists of the following five algorithms:

GlobalSetup(1λ,U ,UΘ)
R→ GP: The global setup algorithm takes as

inputs the security parameter λ ∈ N encoded in unary, a description of the at-

tribute universe U , and a description on the authority universe UΘ. It outputs

the public global parameters for the system.

We assume that the description of a function T : U → UΘ is included

in the global parameters. This function maps each attribute to the unique

authority it belongs to.

AuthSetup(GP, θ)
R→ (PKθ, SKθ): The authority θ ∈ UΘ calls the au-

thority setup algorithm during its initialization with the global parameters GP

as input and receives its public / secret key pair (PKθ, SKθ). Each authority

is supposed to call this algorithm during its initialization, store the authority

secret key SKθ, and publish the public key PKθ.

KeyGen(GP,GID, SKθ, u)
R→ KGID,u: The key generation algorithm

takes in the global identifier GID of a user, the secret key of the authority

63

θ, an attribute u controlled by this authority, and the global parameters. It

outputs a key for the identity - attribute pair (GID, u).

Encrypt(GP,M,A, {PKθ}θ∈CΘ)
R→ CT: The encryption takes in a mes-

sage M , an access structure A, a set of public keys {PKθ}θ∈CΘ , and the global

parameters. The set CΘ is the set of the authorities relevant to the access

structure A(See Sec. 2.1.2 for a description of the relevant authorities). The

algorithm outputs the ciphertext CT.

Decrypt(GP, {KGID,u}u∈S ,CT)→ {M,⊥}: The deterministic decryp-

tion algorithm takes in a ciphertext CT, the set of keys of a single user GID

corresponding to different attributes u, and the global parameters. It outputs

either the message M , when the collection of attributes satisfies the access

structure of the ciphertext, or ⊥ when decryption fails.

Correctness: We require that a MA-CP-ABE scheme is correct, i.e.

the decryption algorithm correctly decrypts a ciphertext on A with a secret

key of the attribute set S, when S is an authorized set of A. All the public

keys on the relevant authorities of the access structure A and the secret keys

of the attribute set S should have been created by the AuthSetup algorithm.

For simplicity of the definition we include the entire universe of authorities.

Formally:

Definition 4.3. A MA-CP-ABE scheme is correct when for any user GID, for

all messages M , and all attribute sets S and access structures A with S ∈ A

64

(i.e. for S authorized):

Pr


Decrypt(GP,

{KGID,u}u∈S ,CT) 6= M

∣∣∣∣∣∣∣∣∣∣∣

GP
R← GlobalSetup(1λ){

(PKθ, SKθ)
R← AuthSetup(GP, θ)

}
θ∈UΘ{

KGID,u
R← KeyGen

(
GP,GID, SKT(u), u

)}
u∈S

CT
R← Encrypt

(
GP,M,A, {PKθ}θ∈UΘ

)

 ≤ negl(λ)

where the probability is taken over all random coins of all algorithms.

4.2.4 Small Universe, Large Universe, and Unbounded Construc-
tions

Orthogonal to the above definitions, we characterize the ABE schemes

with respect to the attribute universe size with the following properties:

Small Universe Constructions In these systems, the size of the attribute

universe U is polynomial in the security parameter λ. Typically for

construction of this type, the number of group elements of the public

parameters, secret keys, and/or ciphertexts depends polynomially on

|U|. As a result, the designer of these systems has to decide during setup

on a trade off between the expressiveness of the different policies (the

bigger the universe, the more expressive the policies) and the efficiency

of the implementation (the larger the universe, the less efficient scheme).

Large Universe Constructions In these systems, the size of the attribute

universe is exponential in the security parameter λ, while the size of the

public parameters, secret keys, and ciphertexts is polynomial λ. This

is obviously a desired feature, since in practice any possible attribute

65

can be used in the policies of these systems. For example, the attribute

universe can be the set of character strings of up to 128 characters.

An extra property that can be applied to both of the above notions is

the following:

Unbounded Constructions In unbounded constructions the length of the

public parameters, keys and ciphertexts depends only on λ and is inde-

pendent of the size of the attribute universe |U|.

According to the above definitions, a large universe ABE scheme is

also unbounded, while a small universe ABE scheme can be either bounded

or unbounded. Actually, in several works [74] the term unbounded implied

a large universe construction. The only small universe and unbounded ABE

is the construction of Okamoto and Takashima [88], where all the encryption

components are of constant length, but the security proof requires the size of

the attribute universe to be polynomial in the security parameter. In this case,

the trade off is happening between expressiveness and proven security of the

implementation.

A common approach to construct large universe schemes from small

universe ones is to use a hash function that maps attributes from an exponen-

tial sized set to another exponential sized set. However, in this case the hash

function has to be modeled as a random oracle in the security proof, which

implies weaker security guarantees.

66

With respect to the inputs to the Setup algorithm of different schemes,

the small universe constructions take as input (a description of) the entire

universe U , while for the large universe constructions the attribute universe

depends typically on the security parameter only. In these cases, the Setup

algorithm takes as input only 1λ. Finally, for the multi-authority setting, we

note that the universe of authorities is considered to be polynomially bounded

(although this is not necessary for our security proof in Sec. 6.3), since we

assume that at most a polynomial number of public authorities is going to be

deployed at any given time.

Our constructions of Chap. 6 are large-universe constructions secure

under various security notions, and more specifically the attribute universe is

Z∗p where p is a prime number with ‖p‖ = λ. Since practicality was one of

our main goals in Chap. 6 we required our constructions to be large universe

in order to achieve maximum expressiveness. On the other hand, the robust

construction of Chap. 5 is a small-universe (bounded) construction. That is,

the size of the public parameters depends linearly of the size of the attribute

universe, set during the Setup algorithm.

4.2.5 Dual System CP-ABE

A dual system CP-ABE system consists of the additional two algo-

rithms:

KeyGenSf (PP,MSK,S)
R→ S̃K: The key generation algorithm takes

as inputs the public parameters PP, the master secret key MSK and a set

67

of attributes S ⊆ U . The algorithm generates a semi-functional secret key

corresponding to S.

EncryptSf (PP,M,A)
R→ C̃T: The encryption algorithm takes as in-

puts the public parameters PP, a plaintext message M , and an access structure

A on U . It outputs the semi-functional ciphertext C̃T.

4.3 Security Notions

In this section we present the various security notions under which our

constructions are secure. All security notions are defined via security games

between a challenger C and an attacker A. In all games the attacker outputs a

pair of messagesM0 andM1 and receives an encryption ofMb, where b
R← {0, 1}

is a random bit picked by the challenger. The goal of the attacker is to guess

which message was encrypted. Its guess/output is a bit b′ ∈ {0, 1} and its

success is measured by the advantage defined as

AdvA(λ) ..= |2 · Pr [b′ = b]− 1| = |Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0]|

4.3.1 CP-ABE Security Notions

In this section we present the definition of adaptive (or full) security for

CP-ABE schemes. This is described by a game between a challenger and an

attacker and is parameterized by the security parameter λ ∈ N. The phases

of the adaptive security game are the following:

Setup: The challenger calls the Setup(1λ) algorithm and sends the

68

public parameters PP to the attacker.

Query Phase 1: In this phase the attacker can adaptively ask for

secret keys for the sets of attributes S1,S2, . . . ,SQ1 . For each Si the challenger

calls KeyGen(MSK,Si)→ SKi and sends SKi to the attacker.

Challenge: The attacker declares an access structure A∗ and two

equal-length plaintexts M0 and M1. The challenger receives (A∗,M0,M1) and

flips a random coin b ∈ {0, 1}. After calling Encrypt(Mb,A∗)→ CT, he sends

CT to the attacker.

The restriction that has to be satisfied by the access structure A∗ is

that none of the queried sets in Phase 1 satisfies it, i.e. ∀i ∈ [Q1] : Si /∈ A∗.

Query Phase 2: This the same as query phase 1. The attacker

asks for the secret key for the sets SQ1+1,SQ1+2, . . . ,SQ, for which the same

restriction holds: ∀i ∈ [Q] : Si /∈ A∗.

Guess: The attacker outputs his guess b′ ∈ {0, 1} for b.

Definition 4.4. A CP-ABE scheme is adaptively secure if all PPT attackers

have at most a negligible advantage in λ in the adaptive security game.

A weaker notion of security for CP-ABE scheme is when the attacker

declares the challenge access structure at the beginning of the game. That is,

the selective security game is the same as the adaptive security game except

that the Setup phase is preceded by the following phase:

Initialization: In this phase the attacker declares the challenge ac-

cess structure A∗, which he will try to attack, and sends it to the challenger.

69

As before all secret key queries should satisfy the same restriction:

∀i ∈ [Q] : Si /∈ A∗.

Definition 4.5. A CP-ABE scheme is selectively secure if all PPT attackers

have at most a negligible advantage in λ in the selective security game.

4.3.2 KP-ABE Security Notions

Similarly, the phases of the adaptive security game for KP-ABE schemes

are the following:

Setup: Here the challenger calls the Setup(1λ) algorithm and sends

the public parameters PP to the attacker.

Query Phase 1: In this phase the attacker can adaptively ask for

secret keys for the access structures A1,A2, . . . ,AQ1 . For each Ai the challenger

calls KeyGen(MSK,Ai)→ SKi and sends SKi to the attacker.

Challenge: The attacker declares an attribute set S∗ ⊆ U and two

equal-length plaintexts M0 and M1. The challenger receives (S∗,M0,M1) and

flips a random coin b ∈ {0, 1}. After calling Encrypt(Mb,S∗) → CT, he sends

CT to the attacker.

The restriction that has to be satisfied by the challenge set S∗ is that

none of the queried policies is satisfied by it, i.e. ∀i ∈ [Q1] : S∗ /∈ Ai.

Query Phase 2: This the same as query phase 1. The attacker asks

for the secret key for the access structures AQ1+1,AQ1+2, . . . ,AQ, for which the

same restriction holds: ∀i ∈ [Q] : S∗ /∈ Ai.

70

Guess: The attacker outputs his guess b′ ∈ {0, 1} for b.

Definition 4.6. A KP-ABE scheme is adaptively secure if all PPT attackers

have at most a negligible advantage in λ in the adaptive security game, where

the advantage of an attacker is defined as Adv = Pr [b′ = b]− 1/2.

As before, we define the weaker notion of security via the selective

security game. This is the same as the adaptive security game except that the

Setup phase is preceded by the following phase:

Initialization: In this phase the attacker declares the challenge at-

tribute set S∗, which he will try to attack, and sends it to the challenger.

All secret key queries should satisfy the restriction: ∀i ∈ [Q] : S∗ /∈ A∗i .

Definition 4.7. A KP-ABE scheme is selectively secure if all PPT attackers

have at most a negligible advantage in λ in the selective security game.

4.3.3 Multi-Authority Static Security

In this section we will define the static (or non-adaptive) security game

between a challenger and an attacker. The difference between this security

game and the adaptive one is that all queries done by the attacker are sent

to the challenger immediately after seeing the public parameters. As usual,

we also allow the attacker to corrupt a certain set of authorities that he can

control. These authorities are chosen by the attacker after seeing the global

parameters and remain the same until the end of the game.

71

The static security game is parameterized by the security parameter

λ and consists of the following phases:

Global Setup: The challenger calls GlobalSetup(1λ)→ GP and gives

the global parameters GP to the attacker.

Attacker’s Queries: Then the attacker responds with (CΘ, NΘ, Q,

(M0,M1), A) where:

• A set CΘ ⊆ UΘ of corrupt authorities and their respective public keys

{PKθ}θ∈CΘ , which he might have created in a malicious way4.

• A set NΘ ⊆ UΘ of the non-corrupt authorities for which the adversary

requests the public keys. Obviously, it should be disjoint from the set of

corrupt authorities.

• A sequence Q = {(GIDi,Si)}mi=1 of the secret key queries, where the

global identities GIDi are distinct and Si ⊆ U with T(Si) ∩ CΘ = ∅.

A pair (GIDi,Si) in this sequence denotes that the attacker requests the

secret keys for the user GIDi with attributes from the set Si. That is, for

every u ∈ Si the attacker gets a key KGIDi,u ← KeyGen(GIDi, SKT(u),

u, GP). According to the restriction T(Si) ∩ CΘ = ∅, none of these keys

come from a corrupt authority.

• Two messages M0,M1 of equal length, and a challenge access structure

A encoded in a suitable form. We require that for every i ∈ [m] the

4The only requirement is that they have the correct type.

72

set Si ∪
⋃
θ∈CΘ T−1(θ) is a unauthorized set of the access structure A,

where
⋃
θ∈CΘ T−1(θ) is the set of all the attributes belonging to corrupt

authorities. This way, the attacker will not be able to trivially win the

game by decrypting the challenge ciphertext with a secret key given to

him augmented with the key components from the corrupt authorities.

Challenger’s Replies: The challenger flips a random coin b
R←

{0, 1} and replies with:

• The public keys PKθ ← AuthSetup(GP, θ) for all θ ∈ NΘ.

• The secret keys KGIDi,u ← KeyGen(GIDi, SKT(u), u,GP) for all i ∈ [m]

and for all u ∈ Si.

• The challenge ciphertext CT∗ ← Encrypt(Mb, A, {PKθ}, GP) where

{PKθ} is the set of all authority public keys (corrupt and non corrupt).

Guess: The attacker outputs a guess b′ ∈ {0, 1}.

Definition 4.8. A MA-CP-ABE scheme is statically secure if all PPT attack-

ers have at most a negligible advantage in λ in the static security game.

4.3.4 IBE Leakage-Resilient Adaptive Security

The security of our IBE system is based on a game, called MasterLeak.

It is a modified version of the usual IbeCpa security game. In that game,

the attacker can make a polynomial number of KeyGen queries for identities

73

other than the challenge identity. Each of these queries returns a secret key of

the requested identity. The main idea of our security game is to allow these

queries and in addition allow leakage on the master key and secret keys of

the challenge identity. The only restriction we impose is that it can not get

leakage of more than `MSK bits per master key (remember we can have many

master keys) and `SK bits per secret key, where `MSK, `SK are parameters of

the game.

The game starts with a setup phase, where the challenger runs the

setup algorithm and gives the attacker the public parameters. It also gives

the attacker a handle (i.e. reference) to the master key. We now allow the

attacker to make three kinds of queries, called Create, Leak and Reveal.

With a Create query, the attacker asks the challenger to create a key and

store it. The attacker supplies a handle that refers to a master key to be used

in the key generation algorithm. Each such query returns a unique handle-

reference to the generated key, so that the attacker can refer to it later and

either apply a leakage function to it and/or ask for the entire key. The original

master key (the one created in the Setup algorithm) gets a handle of 0.

Using a handle, the attacker can make a leakage query Leak on any key

of its choice. Since all queries are adaptive (the attacker has the ability to leak

from each key a few bits at the time, instead of requiring the leakage to occur

all at once) and the total amount of leakage allowed is bounded, the challenger

has to keep track of all keys leaked via these queries and the number of leaked

bits from each key so far. Thus, it creates a set T that holds tuples of handles,

74

identities, keys, and the number of leaked bits. Each Create query adds a

tuple to this set and each Leak query updates the number of bits leaked.

The Reveal queries allow the attacker to get access to an entire secret

key. They get as input a handle to a key and the challenger returns this secret

key to the attacker. The obvious restriction is that the attacker can not get a

master key, since it would trivially break the system. For the same reason, no

key for the challenge identity should be revealed and thus the challenger has

to have another set to keep track of the revealed identities. We will denote this

set by R. We also note that the Reveal queries model the attacker’s ability to

“change its mind” in the middle of the game on the challenge identity. Maybe

the attacker, after getting leakage from a secret key, decides that it is better

to get the entire key via a Reveal query. Thus we achieve the maximum level

of adaptiveness.

We now define our game formally. The security game is parameterized

by a security parameter λ and two leakage bounds `MSK = `MSK(λ), `SK =

`SK(λ). The master keys’, secret keys’ and identities’ spaces are denoted by

MK, SK, and I, respectively. We assume that the handles’ space is H = N.

The game MasterLeak consists of the following phases:

Setup: The challenger makes a call to Setup(1λ) and gets a master

key MSK and the public parameters PP. It gives PP to the attacker. Also,

it sets R = ∅ and T = {(0, ε,MSK, 0)}. Remember that R ⊆ I and T ⊆

H × I × (MK ∪ SK) × N (handles - identities - keys - leaked bits). Thus

initially the set T holds a record of the original master key (no identity for it

75

and no leakage so far). Also a handle counter H is set to 0.

Phase 1: In this phase, the adversary can make the following queries

to the challenger. All of them can be interleaved in any possible way and the

input of a query can depend on the outputs of all previous queries (adaptive

security).

• Create(h,X): h is a handle to a tuple of T that must refer to a master

key and X can be either an identity ID or the empty string ε.

The challenger initially scans T to find the tuple with handle h. If the

identity part of the tuple is not ε, which means that the tuple holds a

secret key of some identity, or if the handle does not exist, it responds

with ⊥.

Otherwise, the tuple is of the form (h, ε,MSK′, L). Then the chal-

lenger makes a call to KeyGen(MSK′, X) → K and adds the tuple

(H + 1, X,K, 0) to the set T . K is either a secret key for identity ID

or another master key. After that, it updates the handle counter to

H ← H + 1.

• Leak(h, f): In this query, the adversary requests leakage from a key

that has handle h ∈ N with a polynomial-time computable function f of

constant output size5 acting on the set of keys.

5We apply this restriction so that the adversary does not get any “extra” information
about the input; only the output bits of the function. This restriction is also present in
other works (e.g. in [28] they use circuits as leakage functions).

76

The challenger scans T to find the tuple with the specified handle. It is

either of the form (h, ID, SK, L) or (h, ε,MSK′, L) 6.

In the first case, it checks if L+‖f(SK)‖ ≤ `SK. If this is true, it responds

with f(SK) and updates the L in the tuple with L + ‖f(SK)‖. If the

checks fails, it returns ⊥ to the adversary.

If the tuple holds a master key MSK′, it checks if L + ‖f(MSK′)‖ ≤

`MSK. If this is true, it responds with f(MSK′) and updates the L with

L+ ‖f(MSK′)‖. If the checks fails, it returns ⊥ to the adversary.

• Reveal(h): Now the adversary requests the entire key with handle h.

The challenger scans T to find the requested entry. If the handle refers

to a master key tuple, then the challenger returns ⊥. Otherwise, we

denote the tuple by (h, ID, SK, L). The challenger responds with SK

and adds the identity ID to the set R.

Challenge: The adversary submits a challenge identity ID∗ /∈ R

and two messages M0,M1 of equal size. The challenger flips a uniform coin

c
R← {0, 1} and encrypts Mc under ID∗ with a call to Encrypt(Mc, ID∗). It

sends the resulting ciphertext CT∗ to the adversary.

Phase 2: This is the same as Phase 1 with the restriction that

the only queries allowed are Create and Reveal queries that involve a (non-

master) secret key with identity different than ID∗. The reason for forbidding

6It can be the case that MSK′ is the original master key.

77

Leak queries on a master key and on ID∗ is that the adversary can encode

the entire decryption algorithm of CT∗ as a function on a secret key, and thus

win the game trivially if we allow these queries. For the same reason, the

challenger can not give an entire secret key of ID∗ to the adversary and hence

no Reveal queries involving ID∗ are allowed too. Leak queries on keys of

identities other than ID∗ are useless, since the adversary can get the entire

secret keys.

Guess: The adversary outputs a bit c′ ∈ {0, 1}. We say it succeeds

if c′ = c.

The security definition we will use is the following:

Definition 4.9. An IBE encryption system Π is (`MSK, `SK)-master-leakage

secure if for all PPT adversaries A it is true that

AdvMasterLeak
A,Π (λ, `MSK, `SK) ≤ negl(λ)

where AdvMasterLeak
A,Π (λ, `MSK, `SK) is the advantage of A in game MasterLeak with

security parameter λ and leakage parameters `MSK = `MSK(λ), `SK = `SK(λ)

and is formally defined as

AdvMasterLeak
A,Π (λ, `MSK, `SK) =

∣∣∣∣Pr [A succeeds]− 1

2

∣∣∣∣ ,
where the probability is over all random bits used by the challenger and the

attacker.

78

4.3.5 CP-ABE Leakage-Resilient Adaptive Security

In this section we will define the MasterLeakAbe which models the adap-

tive (or full) security notion for the leakage resilient CP-ABE schemes. The

main difference with the regular adaptive game for CP-ABE schemes is that

in this case the attacker can ask for leakage on secret keys of his choice, even

if these secret keys can decrypt the challenge ciphertext. He might even ask

for leakage on the master secret key. Of course the attacker is not allowed to

leak on the entire keys, because otherwise he would be able to trivially win the

game. Hence, it is parameterized by two leakage bounds, `MSK, `SK ∈ N, that

bound the number of leaked bits that the attacker is allowed to acquire from

each master secret key7 and each secret key, respectively. As in the regular

game, the attacker is also allowed to retrieve entire keys under the restriction

that they can not decrypt the challenge ciphertext.

Since we are interested in adaptive security, we give to the attacker

the ability to postpone his decision on which keys are leaked, which ones

are revealed, and the challenge policy, as long as possible. For example, the

attacker might request leakage on some secret key and, depending on the result,

either get the entire key or stop leaking on it and use a challenge ciphertext

that can be decrypted by it. To achieve this functionality, the challenger upon

the creation of a key, assigns a handle to it (a unique integer) and provides to

7We might have many master secret keys because the scheme might support an update
algorithm that can output a fresh master secret key, consistent with the original public
parameters.

79

the attacker reference to it via this handle. Using this handle, the attacker can

either make many leakage queries or ask for a complete reveal on the key. The

challenger holds a record of the total number of leaked bits from each specific

handle, so that the leakage does not exceed the leakage bounds. Also every

time the attacker gets an entire key, the challenger stores the attribute set of

this key in another record in order to be able to check the restriction that the

challenge access structure is not satisfied by any of these keys

Formally the MasterLeakAbe game consists of the following phases:

Setup: The challenger makes a call to Setup(1λ,U) and gets a master

key MSK and the public parameters PP. It gives PP to the attacker. Also,

it sets R = ∅ (the revealed keys’ list) and T = {(0,U ,MSK, 0)} (the handles’

list). Here, R ⊆ 2U and T ⊆ H × 2U × (MK ∪ SK) × N (handles - sets of

attributes - keys - leaked bits so far), whereMK and SK is the space of master

keys and secret keys, respectively. Thus initially the set T holds a record of

the master key (universal attribute set for it and no leakage so far). Also a

handle counter H is set to 0.

Phase 1: In this phase, the adversary can make the following queries

to the challenger. All of them can be interleaved in any possible way and

therefore the input of a query can depend on the outputs of all previous queries

(adaptive security).

• Create(h,S): h is a handle to a tuple of T that has to refer to a master

key. The attribute set S can be any subset of the universe U , including

80

U itself. If S = U , the attacker asks for the creation (via the update

algorithm) of another master key.

The challenger initially scans T to find the tuple with handle h. If the

attribute set field of the tuple is not U , which means that the tuple holds

a non-master key, or if the handle does not exist, it responds with ⊥.

Otherwise, the tuple is of the form (h,U ,MSK′, L). Then the chal-

lenger makes a call to Keygen(MSK′,S) → K and adds the tuple

(H + 1,S, K, 0) to the set T . After that, it updates the handle counter

to H ← H + 1.

• Leak(h, f): In this query, the adversary requests leakage from a key

that has handle h ∈ N with a polynomial-time computable function f

of constant output size acting on the set of keys. The challenger scans

T to find the tuple with the specified handle. It is either of the form

(h,S, SK, L) or (h,U ,MSK′, L).

In the first case, it checks first if L + ‖f(SK)‖ ≤ `SK. If this is true, it

responds with f(SK) and updates the L in the tuple with L+ ‖f(SK)‖.

If the check fails, it returns ⊥ to the adversary.

If the tuple holds a master key MSK′, it checks if L+‖f(MSK′)‖ ≤ `MSK.

If this is true, and responds with f(MSK′) and updates the L with

L+ ‖f(MSK′)‖. If the check fails, it returns ⊥ to the adversary.

• Reveal(h): Now the adversary requests the entire key with handle h.

The challenger scans T to find the requested entry. If the handle refers

81

to a master key tuple, then the challenger returns ⊥. Otherwise, let’s

say the tuple is (h,S, SK, L). The challenger responds with SK and adds

the subset S to the set R.

Challenge: The adversary submits a challenge access structure A∗

with the restriction that no subset in R satisfies it. It also submits two mes-

sages M0,M1 of equal size. The challenger flips a uniform coin c
R← {0, 1} and

encrypts Mc under A∗ with a call to Encrypt(Mc,A∗). It sends the resulting

ciphertext CT∗ to the adversary.

Phase 2: This is the same as Phase 1, except with the restriction

that the only allowed queries are Create and Reveal queries for secret keys

with attribute sets that do not satisfy A∗.

Guess: The adversary outputs a bit c′ ∈ {0, 1}. We say it succeeds

if c′ = c.

Definition 4.10. A CP-ABE scheme is (`MSK, `SK)-master leakage secure if all

PPT attackers have at most a negligible advantage in λ in the MasterLeakAbe

game.

4.3.6 Three Properties for Leakage-Resilient Adaptive Security

To prove security of our leakage-resilient systems of Chapter 5, we will

first define three properties. These are defined similarly in both the IBE and

ABE cases. The only difference is that the keys correspond to identities in

the IBE case and attribute sets in the ABE case. Here, we will give the

82

definitions of semi-functional ciphertext invariance, the one semi-functional

key invariance, and semi-functional security in the ABE setting.

The MasterLeakC game is exactly the same as the MasterLeakAbe game

except that in the Challenge phase, the challenger uses EncryptSF instead

of Encrypt to create a semi-functional ciphertext, and returns this to the

adversary.

In the MasterLeakCK game the challenger again uses EncryptSF for

the challenge phase. However, the set of tuples T has a different structure.

Each tuple holds for each key (master or secret) a normal and a semi-functional

version of it. In this game, all keys leaked or given to the attacker are semi-

functional. As we have noted above, the semi-functional key generation al-

gorithm takes as input a normal master key. Thus the challenger stores the

normal versions, as well the semi-functional ones so that it can use the normal

versions of master keys as input to KeyGen calls. More precisely, the challenger

additionally stores a semi-functional master key in tuple 0 by calling Key-

genSF(MSK, ε) after calling Setup. Thereafter, for all Create(h,X) queries,

the challenger makes an additional call to KeygenSF(MSK′, X), where MSK′

is the normal version of the master key stored in tuple h. Leak and Reveal

queries act always on the semi-functional versions of each key.

The MasterLeakb game is similar to the MasterLeakCK game, with the

main difference being that the attacker can choose on which version of each key

to leak or reveal. In other words, on the first leakage or reveal query on a key

of the augmented set T , the attacker tells the challenger whether it wants the

83

normal or the semi-functional version of the key. In order for the challenger

to keep track of the attacker’s choice on each key, we further augment each

tuple of T with a lock-value denoted by V ∈ N that can take one of the three

values:

• −1: That means that the attacker has not made a choice on this key yet

and the key is “unlocked”. This is the value the tuple gets, in a Create

query.

• 0: The attacker chose to use the normal version of the key on the first

leakage or reveal query on it. All subsequent Leak and Reveal queries

act on the normal version.

• 1: The attacker chose the semi-functional version and the challenger

works as above with the semi-functional version.

To summarize, each tuple is of the form (h,X,K, K̃, L, V) i.e. handle -

attribute set - normal key - semi-functional key - leakage - lock. For example,

the original master key is stored at the beginning of the game in the tuple

(0, U,MSK,KeygenSF(MSK, U), 0,−1).

At some point, the attacker must decide on a challenge key which is

“unlocked”, V = −1, and tell this to the challenger. The challenger samples a

uniformly random bit b
R← {0, 1} and sets V = b. Therefore, the attacker has

access to either the normal (if b = 0) or the semi-functional (if b = 1) version

of this key via Leak and Reveal queries. We note that if the attacker did not

84

make a choice for the original master key in tuple 0, it can choose this master

key as the challenge key.

The attacker is then allowed to resume queries addressed to either nor-

mal or semi-functional keys, with the usual restrictions (i.e. no leakage or

reveal queries on keys capable of decrypting the challenge ciphertext after the

attacker has seen the challenge ciphertext).

Semi-functional Ciphertext Invariance: We say that a dual system ABE

scheme ΠD has (`MSK, `SK)-semi-functional ciphertext invariance if for any

probabilistic polynomial time algorithm A, the advantage of A in the game

MasterLeakAbe is negligibly close to the advantage of A in the MasterLeakC

game. We denote this by:∣∣AdvMasterLeakAbe
A,ΠD (λ, `MSK, `SK)− AdvMasterLeakC

A,ΠD (λ, `MSK, `SK)
∣∣ ≤ negl(λ).

Semi-functional Key Invariance: We say that a dual system ABE scheme

ΠD has (`MSK, `SK)-semi-functional key invariance if for any probabilistic poly-

nomial time algorithm A, the advantage of A in the MasterLeakC game is neg-

ligibly close to the advantage of A in the MasterLeakCK game. We denote this

by: ∣∣AdvMasterLeakC
A,ΠD (λ, `MSK, `SK)− AdvMasterLeakCK

A,ΠD (λ, `MSK, `SK)
∣∣ ≤ negl(λ).

One Semi-functional Key Invariance: We say that a dual system ABE

scheme ΠD has (`MSK, `SK)-one semi-functional key invariance if, for any prob-

85

abilistic polynomial time algorithm A, the advantage of A in the MasterLeakb

game with b = 0 is negligibly close to the advantage of A in the MasterLeakb

game with b = 1. We denote this by:

∣∣AdvMasterLeak0
A,ΠD (λ, `MSK, `SK)− AdvMasterLeak1

A,ΠD (λ, `MSK, `SK)
∣∣ ≤ negl(λ)

Semi-functional Security: We say that a dual system ABE scheme ΠD has

(`MSK, `SK)-semi-functional security if for any probabilistic polynomial time

algorithm A, the advantage of A in the MasterLeakCK game is negligible. We

denote this by:

AdvMasterLeakCK
A,ΠD (λ, `MSK, `SK) ≤ negl(λ).

The following theorems are proved below.

Theorem 4.11. If a dual system ABE scheme ΠD = (Setup, Keygen, En-

crypt, Decrypt, KeygenSF, EncryptSF) has (`MSK, `SK) - semi - func-

tional ciphertext invariance, (`MSK, `SK) - semi - functional key invariance,

and (`MSK, `SK) - semi - functional security, then Π = (Setup, Keygen,

Encrypt, Decrypt) is a (`MSK, `SK) - master - leakage secure ABE scheme.

Proof. The proof is straight-forward. We first observe that playing the

MasterLeak game with system Π is exactly the same as playing the MasterLeak

game with system ΠD. The methods called are exactly the same. Therefore

we have that:

AdvMasterLeak
A,Π (λ, `MSK, `SK) = AdvMasterLeak

A,ΠD (λ, `MSK, `SK)

86

By semi-functional ciphertext invariance, we have that:

∣∣AdvMasterLeak
A,ΠD (λ, `MSK, `SK)− AdvMasterLeakC

A,ΠD (λ, `MSK, `SK)
∣∣ ≤ negl(λ).

By semi-functional key invariance, we have that:

∣∣AdvMasterLeakC
A,ΠD (λ, `MSK, `SK)− AdvMasterLeakCK

A,ΠD (λ, `MSK, `SK)
∣∣ ≤ negl(λ).

Thus, by the triangle inequality (and the fact that the sum of two

negligible functions is also a negligible function), we may conclude that

∣∣AdvMasterLeak
A,ΠD (λ, `MSK, `SK)− AdvMasterLeakCK

A,ΠD (λ, `MSK, `SK)
∣∣ ≤ negl(λ).

By semi-functional security, we know that

AdvMasterLeakCK
A,ΠD (λ, `MSK, `SK) ≤ negl(λ).

Hence,

AdvMasterLeak
A,ΠD (λ, `MSK, `SK) ≤ negl(λ),

which implies that

AdvMasterLeak
A,Π (λ, `MSK, `SK) ≤ negl(λ).

�

Theorem 4.12. If a dual system ABE scheme ΠD has (`MSK, `SK)-one semi-

functional key invariance, then it also has (`MSK, `SK)-semi-functional key in-

variance.

87

Proof. Suppose for contradiction that there is a PPT adversary A that breaks

the semi-functional key invariance property of our system, but ΠD has one

semi-functional key invariance. This means by definition that the difference∣∣AdvMasterLeakC
A,ΠD (λ, `MSK, `SK)− AdvMasterLeakCK

A,ΠD (λ, `MSK, `SK)
∣∣ (4.1)

is non-negligible. Then we will construct another PPT algorithm B that breaks

the one semi-functional key invariance of ΠD, which is a contradiction.

We denote by Q − 1 the maximum number of Create queries that A

makes. Thus, the total number of different secret keys is Q (since we also

count the original master key). Since A is assumed to be polynomial-time, Q

is a polynomial in λ.

For q ∈ [0, Q] we define the game SFq to be like the MasterLeakC game

(with EncryptSF for the challenge phase), semi-functional versions for the

first q different keys, and normal versions for the remaining keys. The order

is defined by the first leakage or reveal query made on each key. As always,

master keys input to Keygen calls are normal. The semi-functional versions

are passed to A via leakage or reveal queries.

Notice that SF0 is the MasterLeakC game and SFQ is the MasterLeakCK

game. Hence, since the difference in advantages of SF0 and SFQ is non-

negligible in λ by (4.1) and Q is a polynomial in λ, there exists a q∗ ∈ [0, Q−1]

such that the difference∣∣∣AdvSFq∗A,ΠD(λ, `MSK, `SK)− Adv
SFq∗+1

A,ΠD (λ, `MSK, `SK)
∣∣∣

88

is non-negligible. This means that the algorithm A has a non-negligible dif-

ference in the advantages when playing game SFq∗ and game SFq∗+1.

So, to create an algorithm B that breaks the one semi-functional key

invariance of ΠD, we use A in the MasterLeakb game. When A makes a key

request, B forwards this to the MasterLeakb challenger as follows. B requests

semi-functional keys for the first q∗ keys, chooses the (q∗+ 1)-th key to be the

challenge key, and requests normal keys for the remaining keys.

Notice that if the MasterLeakb challenger picked b = 0, then A plays

the SFq∗ game. Otherwise, it plays the SFq∗+1 game. This means that

AdvMasterLeakb
B,ΠD (λ, `MSK, `SK) = Adv

SFq∗+b
A,ΠD (λ, `MSK, `SK) for b ∈ {0, 1}

Therefore, B breaks the one semi-functional key invariance of ΠD, which is a

contradiction. �

4.4 Continual Leakage for IBE and ABE

If an IBE or ABE scheme also comes equipped with an update algorithm

which takes in a secret key and outputs a new, re-randomized key from the

same distribution generated by a fresh call to KeyGen, then the above security

definitions yields resilience to continual leakage “for free”. Essentially, the

many master keys and many keys per identity that our definition allows to

leak can be interpreted as updated versions of keys. Hence, each time a key is

updated, the attacker is allowed to obtain new leakage on the new version of

the key.

89

We now formally compare our security definition to the Continual Leak-

age Model (CLM) for leakage resilience. Recent results in this model have

appeared in [28] and [39]. This model allows for leakage on the randomness

generated during the calls of different methods, as well as leakage on the keys

of the system. It is essentially a combination of the types of leakage allowed

in the “Only Computation Leaks” model and the memory leakage model. We

will show that our definition of security implies a form of continual leakage if

the scheme in question has a specific re-randomization property (our schemes

in Sec. 5 have this property).

In the continual leakage model, there is only one master key and one

secret key per user at any moment in time. Continual leakage on many mas-

ter and secret keys is achieved with two new additional algorithms, called

UpdateMK and UpdateSK. These update master and secret keys, respectively,

and as a result a brand new leakage “session” on the updated key is allowed.

We will show that if an IBE or ABE scheme has an extra UpdateSK algorithm

and a specific re-randomization property, then our definition of security implies

security in the CLM. The UpdateMK algorithm is going to be implemented by

our KeyGen algorithm with the empty string as input in the case of IBE and

the entire attribute universe in the case of ABE. The additional algorithm for

both is:

UpdateSK(SK)→ SK′ This algorithm takes in a secret key, SK, and

outputs a re-randomized key, SK′, such that |SK′| = |SK|.

Definition 4.13. An IBE (resp. ABE) scheme Π = (Setup, KeyGen, Encrypt,

90

Decrypt, UpdateSK) is called an IBE (ABE) with re-randomization if the fol-

lowing property holds:

For all MSK,PP generated by a call to Setup, for all master keys

MSK′,MSK′′ generated by applying the KeyGen algorithm with the empty

string (the universe set) and a previously generated master key, for all identi-

ties ID (all attribute sets S), the distribution of a secret key SK′ generated by

the UpdateSK(KeyGen(MSK′, I)) method (by the UpdateSK(KeyGen(MSK′,S))

method) is indistinguishable from the distribution of a secret key SK generated

by KeyGen(MSK′′, I) (by KeyGen(MSK′′,S)).

The security definition of IBE schemes in the Continual Leakage Model

is defined via the following game, called ClmIbe. This is proposed (informally)

in [28]. The CLM definition for ABE schemes is similar.

The game consists of three query phases, where in the first the attacker

can make Extract queries on identities (similar to our Reveal queries) and

leakage queries on the master key. Also, it can ask for an update on the master

key. In the second phase, the attacker has decided on the challenge identity

and can make leakage or update queries on its secret key, in addition to the

previous queries. The third phase is like Phase 2 of the MasterLeak game; no

leakage queries are allowed.

The game is parameterized by the security parameter λ and five leakage

parameters

(ρG, ρUM , ρM , ρUS, ρS). These are meant to be leakage on the generation algo-

91

rithm, on the update procedure of the master key, on the master key, on the

update procedure of a secret key, and on the secret keys, respectively. As in

the MasterLeak game, the challenger has to keep track of the total leakage on

each master key and on every secret key. Since we have only one master key

at a time, there is no need for the challenger to store master keys in T . It has

a master key leakage counter denoted LMSK. The phases of the game are:

Setup - CLM: The challenger chooses “secret randomness” r and

“public randomness” p and calls Setup(1λ; r, p)→ (PP,MSK). The adversary

specifies a polynomial-time computable function f of constant output size such

that ‖f(r, p)‖ ≤ ρG · ‖r‖ for all r, p. The challenger sends to the adversary the

tuple (PP, f(r, p), p). Also it sets the master leakage counter LMSK = ‖f(r, p)‖

and a handle counter H = 0. It initializes R = ∅.

Phase 1 - CLM: In this phase, the adversary can make one of the

following queries to the challenger. All of them can be interleaved in any

possible way and therefore the input of a query can depend on the outputs of

all previous queries (adaptive security).

• Keygen(ID): The challenger adds the identity ID to R, since it should

be considered “revealed” from now on and responds with the output of

a call to KeyGen(MSK, ID).

• MasterLeak(f): In this query, f is a polynomial-time computable func-

tion of constant output size such that LMSK +‖f(MSK)‖ ≤ ρM · ‖MSK‖.

92

The adversary requests leakage from the master key here. The chal-

lenger responds with the value f(MSK) and updates LMSK to LMSK +

‖f(MSK)‖. If LMSK + ‖f(MSK)‖ > ρM · ‖MSK‖, it responds with the

dummy value ⊥.

• UpdateMK(f): Now the attacker requests an update (and leakage)

on the master key with a polynomial-time computable function f of

constant output size. It should be true that ‖f(MSK, r, p)‖ ≤ ρUM ·

(‖MSK‖ + ‖r‖) for all MSK, r, p where r, p are the secret and pub-

lic randomness, respectively, of the KeyGen method. The challenger

chooses randomness r, p and generates a new master key, M̂SK← KeyGen

(MSK, ε; r, p). If LMSK + ‖f(MSK, r, p)‖ ≤ ρM · ‖MSK‖, it gives to

the attacker f(MSK, r, p). Finally, it sets LMSK = ‖f(MSK, r, p)‖ and

MSK← M̂SK, in that order.

Challenge Identity - CLM: In this phase, the attacker chooses the

challenge identity ID∗ /∈ R and the challenger creates a secret key for it:

SKID∗ ← KeyGen(MK, ID∗). Also it sets a leakage counter LSK = 0.

Phase 2 - CLM: In this phase, we allow the following queries. The

first three are same to the respective ones of Phase 1 -CLM.

• Keygen(ID): Obviously ID 6= ID∗ is required.

• MasterLeak(f)

• UpdateMK(f)

93

• Leak(f): In this query, f is a polynomial-time computable function

of constant output size such that LSK + ‖f(SKID∗)‖ ≤ ρS · ‖SKID∗‖.

The adversary requests leakage from the secret key of ID∗ here. The

challenger responds with the value f(SKID∗) and updates LSK to LSK +

‖f(SKID∗)‖. If LSK + ‖f(SKID∗)‖ > ρS · ‖SKID∗‖, it responds with the

dummy value ⊥.

• UpdateSK(f): Now the attacker requests an update, and leakage, on

the secret key of ID∗ with a polynomial-time computable function f

of constant output size. It should be true that ‖f(SKID∗ , r, p)‖ ≤

ρUS · (‖SK‖ + ‖r‖) for all SK, r, p where r, p are the secret and pub-

lic randomness, respectively, of the Keygen method. The challenger

chooses randomness r, p and generates a new secret key, ŜKID∗ ← KeyGen

(MSK, ID∗; r, p). If LSK + ‖f(SKID∗ , r, p)‖ ≤ ρS · ‖SKID∗‖, it gives to

the attacker f(SKID∗ , r, p). Finally, it sets LSK = ‖f(SKID∗ , r, p)‖ and

SKID∗ ← ŜKID∗ , in that order.

Challenge: The adversary submits two messages M0,M1 of equal

size. The challenger flips a uniform coin c
R← {0, 1} and encrypts Mc under

ID∗ with a call to Encrypt(M, ID). It sends the resulting ciphertext CT∗ to

the adversary.

Phase 3 - CLM: Now only Keygen(ID) queries with ID 6= ID∗

are allowed.

94

Guess: The adversary outputs a bit c′ ∈ {0, 1}. We say it succeeds

if c′ = c.

We say that a scheme Π = (Setup, KeyGen, Encrypt, Decrypt, UpdateSK)

is (ρG, ρUM , ρM , ρUS, ρS)-secure in the CLM if any PPT adversary has at most

a negligible advantage in winning the ClmIbe game.

We will prove the following theorem:

Theorem 4.14. If an IBE system Π = (Setup, KeyGen, Encrypt, Decrypt,

UpdateSK) with re-randomization is (`MSK, `SK)-master-leakage secure, then

it is also (
0, 0,

`MSK

‖MSK‖
, 0,

`SK

‖SK‖

)
- secure

in the Continual Leakage Model above.

Proof. To prove the theorem, we assume that we have a PPT attacker A

that breaks our system in the continual leakage model with parameters
(

0, 0,

`MSK

‖MSK‖ , 0, `SK

‖SK‖

)
. Notice that this attacker gets no leakage from the generation

and update algorithms. We will construct a PPT algorithm B that uses A

and breaks the (`MSK, `SK)-master-leakage security of our system. B will play

the role of A’s challenger in the ClmIbe game.

Essentially, the main strategy of the new algorithm is to merge phases

1, Challenge Identity, 2 of the ClmIbe game into Phase 1 of the MasterLeak

game. It will use a handle hMSK to denote the “current” master key and a

handle hID∗ to denote the current secret key of the challenge identity. Also,

95

we state here that B chooses all randomness used to be private. Initially, it

sets hMSK = 0. B works as follows:

Setup: B executes the setup phase of MasterLeak game with its chal-

lenger and sends only the public parameters to A. Since no leakage is allowed

on the generation algorithm and our system does not use public randomness,

this is exactly what A expects.

Phase 1: For every KeyGen(ID) query made by A, B makes a Cre-

ate(hMSK, ID)→ h′ query first and a Reveal(h′)→ SK′ query afterwards. It

gives to A the secret key SK′. It is obvious that this is exactly the output of

KeyGen(MSK, ID), where MSK is the current master key.

For every MasterLeak(f) query made by A, B makes a Leak(hMSK, f)

query. Since LMSK + ‖f(MSK)‖ ≤ ρM · ‖MSK‖ =⇒ LMSK + ‖f(MSK)‖ ≤

`MSK, the challenger of the MasterLeak game has to provide B with the re-

quested leakage f(MSK). Notice that the update it makes to the L of the

tuple is the same as update A’s challenger should make on LMSK - thus legit-

imate in the view of A.

For every UpdateMK(f) query made by A, B has only to update the

master key. That is because ρUM = 0 and thus f outputs nothing. To simulate

an update, it makes a Create(hMSK, ε)→ h′ query. It sets hMSK ← h′, which

changes the current master key to the new one. The method called is exactly

the same, i.e. KeyGen(MSK, ε); hence A sees no difference.

At some point, A reaches the challenge phase. After sending the chal-

96

lenge identity ID∗, B makes a Create(hMSK, ID∗)→ hID∗ query. The handle

hID∗ will point to the current secret key of the challenge identity. For the ad-

ditional queries of Phase 2 - CLM, B works as follows:

For every Leak(f) query, B makes a Leak(hID∗ , f) query. Since LSK +

‖f(SKID∗)‖ ≤ ρS · ‖SKID∗‖ =⇒ LSK + ‖f(SKID∗)‖ ≤ `SK, the challenger of

the MasterLeak game has to provide B with the requested leakage f(SKID∗).

Notice that the update it makes to the L of the tuple is the same as update

A ’s challenger should make on LSK - thus legitimate in the view of A .

For every UpdateSK(f) query, B has only to update the secret key

of ID∗. That is because ρUS = 0 and thus f outputs nothing. Instead of

updating, it makes a Create(hMSK, ID∗) → h′ query. It sets hID∗ ← h′,

which changes the current secret key to the new one. However, now the method

called is not what A expected. It expected the UpdateSK method, but B

implicitly called the KeyGen method. Since the output distributions of the two

methods are indistinguishable by the property of re-randomization, A cannot

have a non-negligible change in its advantage. Thus, the advantage of B will

still be non-negligible.

Challenge: Here, B simply forwards to its challenger the two mes-

sages and the challenge identity provided by A . According to the MasterLeak

game, the challenger encrypt the message under the challenge identity and re-

turns the ciphertext to B . It responds to A with this ciphertext. It is obvious

that this is a correct simulation for A .

97

Phase 2: In this phase A can make only KeyGen queries for ID 6=

ID∗. For each such query, B makes a Create(hMSK, I) → h′ query first and

a Reveal(h′)→ SK′ query afterwards. It gives to A the secret key SK′. It is

obvious that this is exactly the output of KeyGen (MSK, I), where MSK is the

current master key.

Guess: B outputs A ’s guess bit.

The advantage of B in the MasterLeak game is exactly the same as

the advantage of A in ClmIbe. Thus, it breaks the (`MSK, `SK)-master-leakage

security. �

4.4.1 Leakage from Updates

We note here that using the same “guess and check” method of [28], we

can tolerate a small amount leakage on the generation and update procedures

in the Continual Leakage Model. More specifically, we can tolerate leakage

which is logarithmic in the security parameter λ by guessing a value for the

leakage and observing whether the attacker’s advantage noticeably decreases.

If not, we can use this value for the leakage during the key generation or

update in question, and continue the simulation. By limiting the leakage size

to logarithmic, we can efficiently check all possible leakage values and hence

we will be able to find one that works in polynomial time. The details of this

argument are given in [28].

98

CHAPTER 5

Part I: Leakage-Resilient IBE and CP-ABE

Systems

Our IBE and ABE schemes [71] are suitable transformations of the Lewko-

Waters HIBE constructions [72], designed to sustain master and secret key

leakage from an arbitrary number of keys. To hide nominal semi-functionality

in the attacker’s view, we add vectors of dimension n to the front of the

ciphertexts and secret keys of the LW system. Notice in the construction

below that the last two elements of our secret keys and ciphertexts are very

similar to the elements in the LW system. Nominal semi-functionality now

corresponds to the vector of exponents of the semi-functional components of

the key being orthogonal to the vector of exponents of the semi-functional

components of the ciphertext. We can use the algebraic lemma of [28] to

assert that this orthogonality is hidden from attackers with suitably bounded

leakage. We note here that according to the lemma and our security game, the

leakage is not applied to both vectors at once, since then the dot product would

99

be trivial to leak. Finally, to allow leakage on the master key, we designed the

master key to be similar in form to regular secret keys.

Like the original LW scheme, our systems use a bilinear group whose

order is the product of three distinct primes. The role of the first prime or-

der subgroup is to “carry” the necessary information of the plaintext message

and the secret information of each user or the master authority. The second

subgroup is used only in the proof to provide semi-functionality. The third

subgroup is used to additionally randomize secret keys. Each of these compo-

nents is orthogonal to the other two under the pairing operation.

5.1 Leakage-Resilient IBE

Our IBE system from [71] is the first IBE scheme resistant to continual

leakage attacks on both the users’ secret keys and master secret key. It serves

as a stepping stone towards the more complicated CP-ABE construction of Sec.

5.2. It can also be extended to a continual-leakage-resilient HIBE construction

using the same techniques.

5.1.1 Construction

Our dual system IBE scheme consists of the following algorithms:

Setup(1λ) The setup algorithm generates a bilinear group G of com-

posite order N = p1p2p3, where p1, p2, p3 are three different λ1,λ2,λ3-bit prime

100

numbers respectively1. Therefore, for every i ∈ {1, 2, 3} we have that 2λi−1 ≤

pi < 2λi . The subgroup of order pi in G is denoted by Gi. We assume that the

identities of users in our system are elements of ZN .

We let n be a positive integer greater than or equal to 2. The value of

n can be varied - higher values of n will lead to a better fraction of leakage

being tolerated (see Sec. 5.3), while lower values of n will yield a system with

fewer group elements in the keys and ciphertexts.

The algorithm picks 3 random generators (g1, u1, h1) ∈ G1 × G1 × G1

and one generator g3 ∈ G3. It also picks n + 1 random exponents (α, x1,

x2, . . ., xn)
R← Zn+1

N . It picks (r, y1, y2, . . ., yn)
R← Zn+1

N , a random vector

~ρ = (ρ1, . . . , ρn+2)
R← Zn+2

N , and a random element ρn+3
R← ZN . It outputs the

following public parameters and master key:

PP = (N, g1, g3, u1, h1, e(g1, g1)α, gx1
1 , g

x2
1 , . . . , g

xn
1)

MSK =
(
~K∗, K∗

)
=

((
gy1

1 , . . . , g
yn
1 , gα1 h

−r
1

n∏
i=1

g−xiyi1 , gr1

)
∗ g~ρ3 , ur1g

ρn+3

3

)

KeyGen(MSK,PP, X) We first consider when X = ε, the empty string.

Then this algorithm re-randomizes the master key by picking another (r′, y′1,

y′2, . . ., y′n)
R← Zn+1

N , a random vector ~ρ′ =
(
ρ′1, . . . , ρ

′
n+2

) R← Zn+2
N , and a

random element ρ′n+3
R← ZN . If MSK =

(
~K∗, K∗

)
, it outputs the new (same-

1The three λ’s depend on the security parameter and are chosen appropriately to get a
better leakage fraction (see Sec. 5.3.

101

sized) master key:

MSK′ =
(
~K ′, K ′

)
=

(
K∗ ∗

(
g
y′1
1 , . . . , g

y′n
1 , h−r

′

1

n∏
i=1

g
−xiy′i
1 , gr

′

1

)
∗ g~ρ′3 , K∗ur

′

1 g
ρ′n+3

3

)

If X = ID ∈ ZN , an identity, the algorithm picks n + 1 random

exponents (r′, z1, z2, . . . , zn)
R← Zn+1

N . Also it picks ~ρ′
R← Zn+2

N and outputs

the secret key:

SK = ~K1 = ~K∗ ∗

(
gz11 , g

z2
1 , . . . , g

zn
1 , (K

∗)−I(uID1 h1)−r
′
n∏
i=1

g−xizi1 , gr
′

1

)
∗ g~ρ′3

The terms g
−xiy′i
1 and g−xizi1 above are calculated by using the gxi terms

of PP.

It is very important to notice that with knowledge of α alone, one can

create properly distributed secret keys, because the random terms r, y1, . . ., yn,

ρn+3, ~ρ of the master key are all masked by the random terms r′, z1, . . . , zn, ~ρ′

generated by the algorithm. However, instead of storing α, the master author-

ity now stores n+ 3 elements of G.

Encrypt(M, ID) The encryption algorithm picks s
R← ZN and outputs

the ciphertext:

CT =
(
C0, ~C1

)
=

=
(
M · (e(g1, g1)α)s,

(
(gx1

1)s, . . . , (gxn1)s, gs1, (u
ID
1 h1)s

))
∈ GT ×Gn+2

Decrypt(CT, SK) To calculate the blinding factor e(g1, g1)αs, one com-

102

putes en+2(~K1, ~C1). If the encryption and decryption are correct, we get:

en+2(~K1, ~C1) = e(g1, g1)αse(g1, u
ID
1 h1)rse(g1, u

ID
1 h1)r

′s

· e(h1, g1)−rse(uID1 , g1)−rse(uID1 h1, g1)−r
′s

·
n∏
i=1

e(g1, g1)−xiyis
n∏
i=1

e(g1, g1)−xizis

·
n∏
i=1

e(g1, g1)xiyis
n∏
i=1

e(g1, g1)xizis

= e(g1, g1)αs

(Note that the G3 parts of the key do not contribute anything because they

are orthogonal to the ciphertext under e.)

Hence, the message is computed as:

M =
C0

en+2(~K1, ~C1)

5.1.2 Semi-Functionality

All the ciphertexts, master keys, and secret keys generated by the above

algorithms are normal, where by normal we mean that they have no G2 parts.

On the other hand, a semi-functional key or ciphertext has G2 parts. We let

g2 denote a generator of G2. The remaining algorithms of our dual system

IBE are the following:

KeyGenSf(MSK, X) → K̃ This algorithm calls first the normal key

generation algorithm Keygen(MSK, X) to get a normal key MSK = (~K∗,

K∗) or SK = ~K1, depending on X.

103

In the former case, it picks ~θ
R← Zn+2

N and θ
R← ZN and outputs

M̃SK =
(
~K∗ ∗ g~θ2, K∗gθ2

)
In the latter case, it picks ~γ

R← Zn+2
N and outputs

S̃K = ~K1 ∗ g~γ2

EncryptSf(M, ID)→ C̃T This algorithm calls first the normal encryp-

tion algorithm Encrypt(M , ID) to get the ciphertext CT = (C0, ~C1). Then it

picks ~δ
R← Zn+2

N and outputs

C̃T =
(
C0, ~C1 ∗ g

~δ
2

)
.

Notice that the above algorithms need a generator g2 of the subgroup

G2. We call the three terms
(
~θ, θ
)
, ~γ, ~δ the semi-functional parameters of

the master key, secret key, and ciphertext, respectively. Notice that a se-

cret key that has been constructed using a semi-functional master key is

considered semi-functional ; not normal. For example, if someone uses the

master key M̃SK, with parameters
(
~θ, θ
)

, to construct a secret key for iden-

tity ID with KeyGen, then this will be semi-functional with parameters ~γ =

~θ + (0, . . . , 0,−IDθ, 0). Normal secret keys do not have a G2 part.

The semi-functional keys are partitioned in nominal semi - functional

keys and in truly semi - functional keys, with respect to a specific semi -

functional ciphertext. In short, a nominal secret key can correctly decrypt the

104

ciphertext (by using Decrypt), while a nominal master key can generate a semi-

functional secret key that correctly decrypts the ciphertext. A semi-functional

secret key of identity IDk with parameters ~γ is nominal with respect to a

ciphertext for identity IDc with parameters ~δ if and only if

~γ · ~δ = 0 mod p2 and IDk = IDc

It is easy to see that only then the decryption is correct, because we get

an extra term e(g2, g2)~γ·
~δ by the pairing. A semi-functional master key with

parameters ~θ, θ is nominal with respect to a ciphertext for identity ID with

parameters ~δ if and only if

~δ ·
(
~θ + (0, . . . , 0,−IDθ, 0)

)
= 0 mod p2.

5.1.3 Continual Leakage

For completeness, we give here the update algorithm for the secret keys.

It is clear that it satisfies the re-randomization property.

UpdateSK(SK) → SK′ The update algorithm picks n + 1 random ex-

ponents (r′, z1, z2, . . . , zn)
R← Zn+1

N and ~ρ′
R← Zn+2

N . For SK = ~K1, it outputs

the new secret key:

SK′ = ~K ′1 = ~K1 ∗

(
gz11 , g

z2
1 , . . . , g

zn
1 , (u

ID
1 h1)−r

′
n∏
i=1

g−xizi1 , gr
′

1

)
∗ g~ρ′3 .

5.1.4 Security

We prove the following theorem:

105

Theorem 5.1. Under the assumptions Comp1, Comp2, Comp3 and for (`MSK

= (n − 1 − 2c) log(p2), `SK = (n − 1 − 2c) log(p2)), where c > 0 is a fixed

positive constant, our dual system IBE scheme is (`MSK, `SK)-master-leakage

secure.

In order to prove that our system is (`MSK, `SK)-master-leakage secure,

we have to prove that it has semi-functional ciphertext invariance, one semi-

functional key invariance, and semi-functional security. Then according to

Theorems 4.11 and 4.12, it is (`MSK, `SK)-master-leakage secure. We will base

each of properties on one of our three complexity assumptions of subsection

3.2.2.

Our values of `MSK and `SK are based on the following lemma, and will

only become relevant in our proof of one semi-functional key invariance.

Semi-functional Ciphertext Invariance

Theorem 5.2. If the assumption Comp1 holds, our system has (`MSK, `SK)-

semi-functional ciphertext invariance.

Proof. We will build a PPT simulator B that breaks the assumption Comp1

with the help of a PPT attacker A that breaks the semi-functional ciphertext

invariance of our system.

The simulator B initially receives input from the assumption’s chal-

lenger, i.e. D1 = (N , G, GT , e, g1, g3) and a challenge term T , which is equal

either to gz1 or gz1g
ν
2 . Then it plays the MasterLeak or the MasterLeakC game

with A in the following way:

106

Setup phase: B picks (α, x1, x2, . . . , xn, a, b)
R← Zn+3

N . It computes

u1 = ga1 , h1 = gb1, e(g1, g1)α, gx1
1 , gx2

1 , . . ., and gxn1 . It gives the public parame-

ters

PP = (N, g1, g3, u1, h1, e(g1, g1)α, gx1
1 , g

x2
1 , . . . , g

xn
1)

to A where N, g1 and g3 are given by the challenger.

B also picks (r, y1, y2, . . . , yn)
R← Zn+1

N , a random vector ~ρ = (ρ1, . . .,

ρn+2)
R← Zn+2

N , and a random element ρn+3
R← ZN . It stores in tuple 0 the

normal master key:

MSK =
(
~K∗, K∗

)
=

((
gy1

1 , . . . , g
yn
1 , gα1 h

−r
1

n∏
i=1

g−xiyi1 , gr1

)
∗ g~ρ3 , ur1g

ρn+3

3

)
.

Phase 1: The simulator B can answer all of A’s queries, since it

knows the master key of tuple 0. It works according to the definition of the

game, by making the appropriate calls.

Challenge Phase: The adversary A gives B two messages M0 and

M1 and the challenge identity ID∗. The simulator B chooses c
R← {0, 1} and

outputs the ciphertext:

CT =
(
C0, ~C1

)
=
(
Mc · e (T, gα1) ,

(
T x1 , T x2 , . . . , T xn , T, T aID

∗+b
))
,

where T is the challenge term from the assumption.

Phase 2: B works in the same way as Phase 1.

If T = gz1g
ν
2 , then the ciphertext is semi-functional, since

C0 = Mc · e (gz1g
ν
2 , g

α
1) = M · e(g1, g1)αz

T aI
∗+b = (uI

∗
1 h1)zg

ν(aID∗+b)
2

T = gz1g
ν
2

T xi = (gxi1)zgνxi2 for i ∈ {1, 2, . . . , n}

107

This implicitly sets s = z and ~δ = (νx1, νx2, . . . , νxn, ν, ν(aID∗ + b)). Ob-

viously, s is properly distributed since z
R← ZN according to the assumption.

The vector ~δ is properly distributed in the attacker’s view because the mul-

tiplying factors (aI∗ + b), x1, x2, . . . , xn are only seen modulo p1 in the public

parameters and not modulo p2. Thus, in A’s view, they are random mod-

ulo p2 by the Chinese Remainder Theorem. This means that B has properly

simulated the MasterLeakC game.

If T = gz1, it is easy to see that the ciphertext is normal since it has no

G2 part, and B has properly simulated the MasterLeak game.

Hence, if A has a non-negligible difference in the advantages of these

two games, B can use it and break the assumption Comp1 with non-negligible

advantage. �

One Semi-functional Key Invariance

Theorem 5.3. If the assumption Comp2 holds, our system has (`MSK, `SK)-one

semi - functional key invariance.

Proof.

In order to prove this theorem we need the following two lemmas:

Lemma 5.4. If the assumption Comp2 holds, then for any PPT adversary A,

A’s advantage in the MasterLeakb game, where b = 0 or b = 1, changes only

by a negligible amount if we restrict it to making queries only on the challenge

identity and on identities that are not equal to the challenge identity modulo

p2 .

108

Proof. If there exists an adversary whose advantage changes by a non-negligible

amount under this restriction, we can find a non-trivial factor of N with non-

negligible probability. This non-trivial factor can then be used to break the

assumption Comp2 (same proof as [72]).

The simulator plays the MasterLeakb game, where b = 0 or b = 1, using

the terms from the assumption Comp2 to create the semi-functional keys and

ciphertext. It works in a way similar to the simulator in the reduction shown

after the proof of the following lemma. �

Lemma 5.5. We suppose that the leakage is at most (`MSK = (n − 1 −

2c) log(p2), `SK = (n − 1 − 2c) log(p2)), where c > 0 is any fixed positive con-

stant. Then, for any PPT adversary A, A’s advantage in the MasterLeak1

game changes only by a negligible amount when the truly semi-functional chal-

lenge key is replaced by a nominal semi-functional challenge key whenever A

declares the challenge key to be either a master key or a key for the same

identity as the challenge ciphertext.

Proof. We suppose there exists a PPT algorithm A whose advantage changes

by a non-negligible amount ε when the MasterLeak1 game changes as described

above. Using A, we will create a PPT algorithm B which will distinguish

between the distributions (~δ, f(~τ)) and (~δ, f(~τ ′)) from Corollary B.1.1 with

non-negligible advantage (where m = n + 1 and p = p2). This will yield a

contradiction, since these distributions have a negligible statistical distance.

109

B simulates the game MasterLeak1 with A as follows. It starts by

running the Setup algorithm for itself, and giving A the public parameters.

Since B knows the original master key and generators of all the subgroups, it

can make normal as well as semi-functional keys. Hence, it can respond to A’s

non-challenge Phase 1 queries by simply creating the queried keys.

With non-negligible probability, A must chose a challenge key in Phase

1 which is either a master key or matches the identity of the challenge cipher-

text. (If it only did this with negligible probability, then the difference in

advantages whenever it declared the challenge key to be either a master key

or a key for the same identity as the challenge ciphertext would be negligible.)

B will not create this challenge key, but instead will encode the leakage

A asks for on this key in Phase 1 as a single polynomial time computable

function f with domain Zn+1
p2

and with an image of size 2`SK . It can do this by

fixing the values of all other keys and fixing all other variables involved in the

challenge key (more details on this below). B then receives a sample (~δ, f(~Γ)),

where ~Γ is either distributed as ~τ or as ~τ ′, in the notation of the corollary.

B will use f(~Γ) to answer all of A’s leakage queries on the challenge key by

implicitly defining the challenge key as follows.

If the challenge key is not a master key, B chooses two more random

values r1, r2 ∈ Zp2 . If the challenge key is a master key, it chooses r1, r2, θ ∈

Zp2 . We let g2 denote a generator of G2. B implicitly sets the G2 components

of the key to be g
~Γ′
2 , where ~Γ′ is defined to be

(
~Γ, 0
)

+ (0, . . . , 0, r1, r2) in

the case of a key which is not a master key, and is defined to be
(
~Γ, 0, 0

)
+

110

(0, . . . , 0, r1, r2, 0) + (0, . . . , 0, θ) in the case of a master key. (Recall that ~Γ

is of length n + 1.) B defines the non-G2 components of the key to fit their

appropriate distribution.

At some point, A declares the identity for the challenge ciphertext. If

the challenge key was not a master key and the challenge ciphertext identity

does not match the challenge key’s identity, then B aborts the simulation

and guesses whether ~Γ is orthogonal to ~δ randomly. However, the simulation

continues with non-negligible probability.

B chooses a random element t2 ∈ Zp2 subject to one of two constraints:

if the challenge key is a master key, it chooses t2 so that δn+1(r1−IDθ)+t2r2 ≡

0 mod p2, where ID is the challenge ciphertext identity. If the challenge key

is for the identity ID, it chooses t2 so that δn+1r1 + t2r2 ≡ 0 mod p2. It

then constructs the challenge ciphertext, using
(
~δ, 0
)

+ (0, . . . , 0, 0, t2) as the

challenge vector (recall that ~δ is of length n + 1). Now, if ~Γ is orthogonal to

~δ, then the challenge key is nominally semi-functional (and well-distributed

as such). If ~Γ is not orthogonal to ~δ, then the challenge key is truly semi-

functional (and also well-distributed).

It is clear that B can easily handle Phase 2 queries, since the chal-

lenge key cannot be queried on here when it is a master key or has the same

identity as the challenge ciphertext. Hence, B can use the output of A to

gain a non-negligible advantage in distinguishing the distributions (~δ, f(~τ))

and (~δ, f(~τ ′)). This violates Corollary B.1.1, since these distributions have a

negligible statistical distance for f with this output size. �

111

To prove Theorem 5.3, we will build a PPT simulator B that breaks the

assumption Comp2 with the help of a PPT attacker A that breaks one semi-

functional key invariance of our system. B will simulate the game MasterLeakb.

Initially the simulator B receives input from the assumption’s challenger, i.e.

D2 = (N,G,GT , e, g1, g3, g
z
1g

ν
2 , g

µ
2 g

ρ
3) and a challenge term T , which is equal

either to gw1 g
σ
3 or gw1 g

κ
2g

σ
3 . Algorithm B works as follows:

Setup phase: B picks (α, x1, x2, . . . , xn, a, b)
R← Zn+3

N . It computes

u1 = ga1 , h1 = gb1, e(g1, g1)α, gx1
1 , gx2

1 , . . ., and gxn1 . It gives the public parame-

ters

PP = (N, g1, g3, u1, h1, e(g1, g1)α, gx1
1 , g

x2
1 , . . . , g

xn
1)

to A where N, g1 and g3 are given by the challenger. No keys are stored in

tuple 0.

Phase 1: We recall that in game MasterLeakb, the challenger has to

store in each tuple both a normal and a semi-functional version of each key.

However, since for the challenge key our goal is to allow leakage on an unknown

version depending on the challenge, we postpone the creation of all keys until

the point where the attacker A decides that they should be normal, semi-

functional, or challenge. Therefore, each Create query returns a handle and

stores an unlocked tuple, but with the two key fields empty. Since the attacker

only gets the handle from each such query, it cannot tell the difference.

Also, our simulator will not store both versions of each key in the tuple,

in contrast to the game rules. It will store only the version that the attacker

112

chose to get leakage from (or reveal). But then one could ask how the simulator

is going to handle the Create(h,X) queries, when the h refers to a tuple with

a semi-functional master key. The answer is that for our system, knowledge of

α alone allows the creation of any type of key. Since the simulator knows α, it

always bypasses the normal Keygen algorithm and creates totally legitimate

keys.

Thus, in this phase, as well as in Phase 2, the simulator B has to

successfully store the appropriate key on six different types of first leakage or

reveal queries:

• A requested a normal master key: In this case B creates a normal mas-

ter key by picking (r, y1, y2, . . . , yn)
R← Zn+1

N , a random vector ~ρ =

(ρ1, . . . , ρn+2)
R← Zn+2

N , and a random element ρn+3
R← ZN . It stores

the following key in the tuple along with lock-value V = 0:

MSK =
(
~K∗, K∗

)
=

((
gy1

1 , . . . , g
yn
1 , gα1 h

−r
1

n∏
i=1

g−xiyi1 , gr1

)
∗ g~ρ3 , ur1g

ρn+3

3

)

Obviously, this is properly distributed, since it the same method used in

the Setup algorithm and this is also the same distribution that occurs

when a normal master key is created by a call to the KeyGen algorithm

with the empty string and a previously created master key as input.

• A requested a semi-functional master key: As in the previous case, B

chooses (r, y1, y2, . . ., yn)
R← Zn+1

N , ~ρ = (ρ1, . . ., ρn+2)
R← Zn+2

N , and

ρn+3
R← ZN . Also it picks ~θ′

R← ZnN and θ′
R← ZN and generates the

113

following key:

M̃SK =
(
~K∗, K∗

)
=

((
gy1

1 , . . . , g
yn
1 , gα1 h

−r
1

n∏
i=1

g−xiyi1 , gr1

)
∗ (gµ2 g

ρ
3)
~θ′ ∗ g~ρ3 , ur1(gµ2 g

ρ
3)θ
′
g
ρn+3

3

)
where gµ2 g

ρ
3 is given by the assumption’s challenger. It is easy to see

that the G1,G3 parts are properly distributed. For the G2 part, the

semi-functional parameters are ~θ = µ~θ′ and θ = µθ′. Thus, this part is

properly distributed as well.

• A requested a normal secret key: In this case, B picks (r′, z1, z2, . . .,

zn)
R← Zn+1

N , and a random vector ~ρ′
R← Zn+2

N . It creates the following

key:

SK = ~K1 =

(
gz11 , g

z2
1 , . . . , g

zn
1 , g

α
1 (uID1 h1)−r

′
n∏
i=1

g−xizi1 , gr
′

1

)
∗ g~ρ′3

• A requested a semi-functional secret key: Now B picks (r′, z1, z2, . . .,

zn)
R← Zn+1

N , a random vector ~ρ′
R← Zn+2

N , and a random vector ~γ′
R←

Zn+2
N . It generates the following key:

S̃K = ~K1 =

(
gz11 , . . . , g

zn
1 , g

α
1 (uID1 h1)−r

′
n∏
i=1

g−xizi1 , gr
′

1

)
∗ (gµ2 g

ρ
3)
~γ′ ∗ g~ρ′3

As before, it is easy to see that the G1,G3 parts are properly distributed

and, for the G2 part, the semi-functional parameters are ~γ = µ~γ′. Thus,

this part is properly distributed as well.

• A requested to be challenged on a master key: Remember that now B

is supposed to flip a coin and store either a normal or a semi-functional

114

master key. Instead of doing this, it will use the assumption’s challenge

term T to generate the master key. To do so, it picks (y′1, y
′
2, . . . , y

′
n)

R←

ZnN , ~ρ = (ρ1, . . . , ρn+2)
R← Zn+2

N , and ρn+3
R← ZN and generates:

MSK =
(
~K∗, K∗

)
=

((
T y
′
1 , . . . , T y

′
n , gα1 T

−b
n∏
i=1

T−xiy
′
i , T

)
∗ g~ρ3 , T ag

ρn+3

3

)
As before, it is easy to see that the G3 part is properly distributed. We

will now argue that the G1 and G2 parts are also well-distributed.

If T = gw1 g
κ
2g

σ
3 , then for the G1 part, this sets (remember that u = ga1

and h = gb1):

r = w and yi = sy′i ∀i ∈ [1, n].

Thus, all parameters are properly distributed. For the G2 part, the

semi-functional parameters are:

~θ = κ
(
y′1, . . . , y

′
n,−b−

∑
xiy
′
i, 1
)

and θ = κa

. Since all terms y′1, . . . , y
′
n, a, b are only seen modulo p1 in the public

parameters, they appear random modulo p2 here. Therefore, in this case,

B has formed a properly distributed semi-functional master key.

It is easy to see that if T = gw1 g
σ
3 , the G2 part above is omitted and B

has formed a properly distributed normal master key.

• A requested to be challenged on a secret key: Now B picks (z′1, z′2, . . .,

z′n)
R← ZnN , and a random vector ~ρ′

R← Zn+2
N . It stores the following key:

SK = ~K1 =

(
T z
′
1 , T z

′
2 , . . . , T z

′
n , gα1 T

−(aID+b)

n∏
i=1

T−xiz
′
i , T

)
∗ g~ρ′3 ,

115

where ID is the identity of this key given by the adversary A.

If T = gw1 g
κ
2g

σ
3 , then this key is semi-functional with

r′ = w and zi = sz′i ∀i ∈ [1, n]

~γ = κ
(
z′1, . . . , z

′
n,−(aI + b)−

∑
xiz
′
i, 1
)

For the same reasons as before, all vectors seem random in A’s view2.

That concludes Phase 1. We mention here that B works the same way

in Phase 2.

Challenge Phase: In this phase, B has to create a semi-functional

ciphertext with EncryptSf. It gets two messages M0 and M1 and the challenge

identity ID∗ from A and chooses c
R← {0, 1}. Then it generates the following

ciphertext:

C̃T =
(
C0, ~C1

)
=

=
(
Mc · e ((gz1g

ν
2), gα1) ,

(
(gz1g

ν
2)x1 , . . . , (gz1g

ν
2)xn , (gz1g

ν
2), (gz1g

ν
2)aID

∗+b
))

where gz1g
ν
2 is given by the assumption’s challenger.

It is easy to see that the ciphertext’s parameters are

s = z and ~δ = ν (x1, . . . , xn, 1, aID∗ + b) .

2We recall that the last two cases exclude each other. We cannot have both a master
key and a secret key picked by A as the challenge key. Thus, for example the term κ is only
seen once modulo p2.

116

Although, the s is obviously properly distributed, the semi-functional

parameters δ are not (if the challenge key is capable of decrypting the cipher-

text). We can argue that the terms x1, . . . , xn seem random modulo p2 to the

adversary (and ν) as before, but we can not do the same for aID∗ + b. This

happens, because it might be the case that a, b have been seen modulo p2 (if

the challenge key is the master key) or aID∗ + b is seen (if the identity of the

challenge key ID is equal to ID∗ modulo p2 or the identity of the challenge

key is the challenge identity). However, lemmas 5.4 and 5.5 assert that the

change in any adversary’s advantage is negligible.

Lemma 5.4 states that if the simulator B aborts and guesses a random

value for the assumption in case it detects that ID = ID∗ mod p2 and ID 6=

ID∗ (it can do that with N), the loss in advantage is only a negligible amount.

Otherwise, the ciphertext is well-distributed when ID 6= ID∗, because the

aID + b in the secret key is uncorrelated to the aID∗ + b of the ciphertext.

On the other hand, notice that if A picks a master key as the chal-

lenge key, this will be nominally semi-functional with respect to the challenge

ciphertext (i.e. the following holds modp2):

~δ ·
(
~θ + (0, . . . , 0,−ID∗θ, 0)

)
= ν (x1, . . . , xn, 1, aID∗ + b) · κ

(
y′1, . . . , y

′
n,−aID∗ − b−

∑
xiy
′
i, 1
)

= 0

The same happens when the challenge key is a secret key for identity

117

ID∗:

~δ · ~γ = ν (x1, . . . , xn, 1, aID∗ + b) · κ
(
z′1, . . . , z

′
n,−(aID∗ + b)−

∑
xiz
′
i, 1
)

= 0 mod p2

Therefore, since ~δ modulo p2 has all terms random but one, it is dis-

tributed the same modulo p2 as if it were chosen uniformly at random from

the orthogonal complement of the key’s semi-functional parameters modulo

p2. Remember that the above is true, only if T = gw1 g
κ
2g

σ
3 and B simulates

the MasterLeak1 game. Then, according to Lemma 5.5, no PPT adversary

can distinguish this from a truly random vector. Thus, the ciphertext seems

properly distributed to the attacker.

In summary, if T = gw1 g
σ
3 , algorithm B simulates a game in which A’s

advantage is only negligibly different from its advantage in the MasterLeak0

game, and if T = gw1 g
κ
2g

σ
3 , B simulates a game in which A’s advantage is only

negligibly different from its advantage in the MasterLeak1 game. Hence, B

can use the output of A to break the assumption Comp2 with non-negligible

advantage. �

Semi-functional Security

Theorem 5.6. If the assumption Comp3 holds, our system has (`MSK, `SK)-

semi-functional security.

Proof. We will build a PPT simulator B that breaks the assumption Comp3

with the help of a PPT attacker A that breaks the semi-functional security of

our system.

118

The input from the assumption’s challenger to B is D3 = (N , G, GT ,

e, g1, g2, g3, gα1 g
ν
2 , gz1g

µ
2) and a challenge term T which is either e(g1, g1)αz or

a random term of GT . Algorithm B works as follows:

Setup phase: B picks (x1, x2, . . . , xn, a, b)
R← Zn+2

N . It computes

u1 = ga1 , h1 = gb1, and gx1
1 , gx2

1 , . . ., gxn1 . The term e(g1, g1)α is computed

as e(gα1 g
ν
2 , g1). (Notice that now α is unknown to B.) It gives the public

parameters PP = (N , g1, g3, u1, h1, e(g1, g1)α, gx1
1 , gx2

1 , . . ., gxn1) to A.

Phase 1: Although our simulator does not know α, it can still create

properly distributed semi-functional keys, which are the only ones needed for

this game. Now it bypasses the KeyGenSf algorithm using the challenge term

gα1 g
ν
2 .

For Create queries on a master key (as well as the key of tuple 0),

the simulator picks (r, y1, y2, . . . , yn, ρn+3, θ
′)

R← Zn+3
N and two random vectors

~ρ, ~θ′
R← ZnN and constructs:

MK =
(
~K∗, K∗u

)
=

((
gy1

1 , . . . , g
yn
1 , (gα1 g

ν
2)h−r1

n∏
i=1

g−xiyi1 , gr1

)
∗ g~θ′2 ∗ g

~ρ
3 , u

r
1g
θ′

2 g
ρ
3

)
Remember that gα1 g

ν
2 is given by the assumption’s challenger. The above is a

properly distributed semi-functional master key, with semi-functional param-

eters ~θ = (0, . . . , 0, ν, 0) + ~θ′ and θ = θ′.

For all secret keys requested by the adversary on identity ID, the

simulator creates and stores the following semi-functional keys:

SK = ~K1 =

(
gz11 , . . . , g

zn
1 , (g

α
1 g

ν
2)(uID1 h1)−r

′
n∏
i=1

g−zixi1 , gr
′

1

)
∗ g ~γ′2 ∗ g

~ρ′

3 ,

119

where the vectors ~ρ′, ~γ′
R← ZnN and (r′, z1, . . . , zn)

R← Zn+1
N are picked in-

dependently for each generated key. It is easy to see that the above is a

properly distributed semi-functional key with semi-functional parameters ~γ =

(0, . . . , 0, ν, 0) + ~γ′.

Challenge Phase: The adversary A gives B two messages M0 and

M1 and the challenge identity ID∗. The simulator B chooses c
R← {0, 1} and

outputs the following ciphertext:

CT =
(
C0, ~C1

)
=

=
(
Mc · T,

(
(gz1g

µ
2)x1 , . . . , (gz1g

µ
2)xn , (gz1g

µ
2), (gz1g

µ
2)aID

∗+b
))
,

where gz1g
µ
2 is given by the assumption’s challenger and T is the challenge term.

Phase 2: B works in the same way as Phase 1.

If T = e(g1, g1)αz, then we get a semi-functional ciphertext of Mc with

parameters:

s = z and ~δ = (µx1, . . . , µxn, µ, µ(aID∗ + b))

As before, ~δ is properly distributed since all terms x1, . . . , xn, aID∗+b are ran-

dom modulo p2. Therefore, B has properly distributed game MasterLeakCK.

On the other hand, if T
R← GT , the term C0 is entirely random and we

get a semi-functional ciphertext of a random message. Therefore, the value

of c is information-theoretically hidden and the probability of success of any

algorithm A in this game is exactly 1/2, since c
R← {0, 1}. Thus, B can use the

120

output of A to break the assumption Comp3 with non-negligible advantage.

�

This concludes the proof of Theorem 5.1.

5.2 Leakage-Resilient CP-ABE

5.2.1 Construction

The algorithms of our CP-ABE system are the following:

Setup(1λ,U) → (PP,MSK): The setup algorithm calls the bilinear

group generation algorithm for composite order groups G(1λ) → (N , p1, p2,

p3, g, G, GT , e).

It picks two random exponents α, a
R← ZN . We note that U denotes the

universe of attributes. Therefore |U| is polynomial in the security parameter

λ and the scheme is a small universe construction. For each attribute i ∈ U , it

chooses random si
R← ZN . It also picks n random exponents x1, x2, . . . , xn

R←

ZN to get the required vectors. For the master key, it picks t∗, y1, . . . , yn ∈ ZN

and ~ρ
R← Zn+1

N , ρn+2
R← ZN ,∀i ∈ U ρ′i

R← ZN for the G3 part.

It outputs the following public parameters and master key:

PP =
(
N, g1, g3, g

a
1 , e(g1, g1)α, gx1

1 , . . . , g
xn
1 , {Ti = gsi1 }i∈U

)
MSK =

(
U , ~K∗1 , L∗, {K∗i }i∈U

)
=

=

(
U ,

(
gy1

1 , . . . , g
yn
1 , gα1 g

at∗

1

n∏
i=1

g−xiyi1

)
∗ g~ρ3 , gt

∗

1 g
ρn+2

3 ,
{
T t
∗

i g
ρ′i
3

}
i∈U

)

121

Notice that ~K∗1 has n+ 1 elements.

KeyGen(MSK,S,PP) → SK: S denotes a set of attributes, S ⊆ U .

The key generation algorithm chooses random values t, z1, . . . , zn ∈ ZN and

random exponents ~ρ
R← Zn+1

N , ρn+2
R← ZN ,∀i ∈ S ρ′i

R← ZN for the G3 part.

The secret key it generates is the following:

SK =
(
S, ~K1, L, {Ki}i∈S

)
=

=

(
S, ~K∗1 ∗

(
gz11 , . . . , g

zn
1 , g

at
1

n∏
i=1

g−xizi1

)
∗ g~ρ3 , L∗gt1g

ρn+2

3 ,
{
K∗i T

t
i g

ρ′i
3

}
i∈S

)

The update or re-randomization of a secret key is done using the secret

key in question instead of the master secret key and the same attribute set S.

In case we want to re-randomize a master key, we use S = U .

Encrypt(M, (A, δ)) → CT: A is an n1 × n2 LSSS matrix and δ is a

mapping from each row Ax of A to an attribute δ(x) ∈ U . The algorithm

picks a random vector ~v = (s, v2, . . . , vn2)
R← Zn2

N . For each row Ax, it picks a

random exponent rx
R← ZN . The ciphertext generated is the following:

CT =
(

(A, δ), C0, ~C1, {Cx, Dx}x∈[n1]

)
=

=

(
(A, δ),M · (e(g1, g1)α)s, ((gx1

1)s, . . . , (gxn1)s, gs1) ,{
g
a〈Ax,~v〉
1 T−rxρ(x) , g

rx
1

}
x∈[n1]

)

Decrypt(CT, SK)→M : First the decryption algorithm computes con-

stants ωx ∈ ZN for every row of A (note that A is given in the ciphertext)

122

such that
∑

δ(x)∈S ωxAx = (1, 0, . . . , 0) ∈ Zn2
N . To calculate the blinding factor,

it computes:

en+1(~C1, ~K1)∏
δ(x)∈S

(
e(Cx, L)e(Dx, Kδ(x))

)ωx =

=
e(g1, g1)αse(g1, g1)sat ·

∏n
i=1 e(g1, g1)−sxizi ·

∏n
i=1 e(g1, g1)sxizi∏

δ(x)∈S (e(g1, g1)at〈Ax,~v〉e(g1, g1)−rxsρ(x)te(g1, g1)rxsρ(x)t)
ωx =

=
e(g1, g1)αse(g1, g1)sat

e(g1, g1)at〈
∑
δ(x)∈S ωxAx,~v〉

=

= e(g1, g1)αs

In the above calculation, the values t, zi are meant denote the exponents

of the secret key.

5.2.2 Semi-Functionality

In this section, we present the algorithms for creating semi-functional

ciphertexts and secret keys for our CP-ABEsystem. In contrast to our previous

systems, we now have two different types of semi-functional keys, called Type

1 and Type 2. Hence we have two different KeyGenSf algorithms. Another

difference is that for every attribute i ∈ U , random values qi
R← ZN are chosen

before the execution of any algorithm and are shared by the semi-functional

ciphertexts and keys - they work similar to public parameters for the semi-

functional algorithms. The algorithms are the following:

KeyGenSf1(MSK,S) → K̃ To create a semi-functional key of type 1,

this algorithm first calls KeyGen(MSK,S) and gets the key K = (S, ~K1,L,

{Ki}i∈S) (Notice that this can be a master key, if S = U). Then it picks

123

~γ
R← Zn+1

N and θ
R← ZN and outputs

K̃ =
(
S, ~K1 ∗ g~γ2 , Lgθ2,

{
Kig

θqi
2

}
i∈S

)
KeyGenSf2(MSK,S)→ K̃ A semi-functional key of type 2 is generated

the same way but without the terms gθ2 and gθqi2 (i.e. we now set θ = 0). It

outputs

K̃ =
(
S, ~K1 ∗ g~γ2 , L, {Ki}i∈S

)
EncryptSf(M, (A, δ)) → C̃T This algorithm first calls the normal en-

cryption algorithm Encrypt(M , (A, δ)) to get the ciphertext CT = ((A, δ), C0,

~C1, {Cx, Dx}x∈[n1]). Then it picks ~δ
R← Zn+1

N , a random vector ~u
R← Zn2

N (recall

n2 is the number of columns of A), and for every row Ax of A, it chooses

δ′x
R← ZN . It outputs

C̃T =

(
(A, δ), C0, ~C1 ∗ g

~δ
2,
{
Cxg

Ax·~u+δ′xqρ(x)

2 , Dxg
−δ′x
2

}
x∈[n1]

)
Notice the use of qρ(x), which are the same q’s used by the KeyGenSf1

algorithm.

If we use the Decrypt algorithm to decrypt a semi-functional ciphertext

with a semi-functional key, we get the extra term

e(g2, g2)〈~γ,~δ〉−θu1 ,

where u1 denotes the first coordinate of vector ~u picked during EncryptSf.

Hence we call a semi-functional key (of type 1 or type 2) nominally semi-

functional with respect to a semi-functional ciphertext if
〈
~γ, ~δ
〉
−θu1 = 0 mod

p2.

124

5.2.3 Security Proof

Our ABE construction has two types of semi-functional key genera-

tion algorithms instead of one. We define here that the semi-functional key

generation algorithm used by game MasterLeakb generates keys of type 2. Es-

sentially the main idea is to convert all keys to semi-functional keys of type

2. Type 1 keys serve as a “stepping stone” between the games MasterLeak0

and MasterLeak1. Remember that if these two games are indistinguishable,

our scheme has one semi-functional key invariance. However, our assumptions

do not allow us to go in one step from one game to the other. To achieve

that, we add an intermediate game, called MasterLeak1/2, which is defined the

exact same way as MasterLeakb, but with the difference that the challenger

always uses a semi-functional key of type 1 for the challenge key. All other

semi-functional keys are of type 2.

We now give the proofs of semi-functional ciphertext invariance, one

semi-functional key invariance (split in two parts), and semi-functional security

for our system.

Theorem 5.7. If the assumption Comp1 holds, our system has (`MSK, `SK)-

semi-functional ciphertext invariance.3

Proof. We assume we have a PPT attacker A which breaks semi-functional

ciphertext invariance of our system. We will create a PPT algorithm B which

breaks the assumption Comp1 with non-negligible advantage. The simulator

3For this theorem to be true the leakage bounds `MSK, `SK can take any values in N∪{0}.

125

B plays the MasterLeakAbe or the MasterLeakC game with the attacker A in

the following way:

Setup phase: B picks α, a
R← ZN and for each attribute i ∈ U , it

chooses random si
R← ZN . It also picks n random exponents x1, x2, . . . , xn

R←

ZN . It gives the public parameters

PP = (N, g1, g3, g
a
1 , e(g1, g1)α, gx1

1 , . . . , g
xn
1 , ∀i ∈ U Ti = gsi1)

to A, where N , g1, and g3 are given by the challenger.

Phase 1: Knowing α, the simulator can generate a normal master

key as in the Setup algorithm and execute all secret key queries (create, leaked,

keygen) with this master key.

Challenge Phase: The adversary A gives B two messages M0 and

M1 and an access structure, encoded as an n1 × n2 LSSS matrix: (A∗, δ∗).

The simulator B chooses random values v′2, . . . , v
′
n2

R← ZN and for each row

A∗x of A∗ one value rx
R← ZN . Using the v′ values, it creates the vector ~v′ =(

1, v′2, . . . , v
′
n2

)
. It flips a random coin c

R← {0, 1} and outputs the ciphertext:

CT =
(

(A∗, δ∗), C0, ~C1, ∀x Cx, ∀x Dx

)
=

=

(
(A∗, δ∗),M · (e(T, gα1))s, (T x1 , . . . , T xn , T) ,

∀x T aA
∗
x·~v′T−r

′
xsδ∗(x) ,∀x T r

′
x

)
,

where T is the challenge term from the assumption.

Phase 2: B works in the same way as Phase 1.

126

If T = gz1g
ν
2 , then the ciphertext is semi-functional, since

C0 = Mc · e (gz1g
ν
2 , g

α
1) = M · e(g1, g1)αz

T xi = (gxi1)zgνxi2 for i ∈ {1, 2, . . . , n}
T = gz1g

ν
2

T aA
∗
x·~v′T−r

′
xsδ∗(x) = g

aA∗x·z~v′
1 g

−zr′xsδ∗(x)

1 · gA
∗
x·aν ~v′−νr′xsδ∗(x)

2 for every row x of A∗

T r
′
x = g

zr′x
1 · gνr

′
x

2 for every row x of A∗

For the G1 part, this implicitly sets s = z, ~v = z~v′ and rx = zr′x. Thus

all the G1 parts are properly distributed (remember that the first coordinate

of ~v should be z).

For the G2 parts, this sets ~δ = ν (x1, . . . , xn, 1), ~u = aν~v′, δ′x =

−νr′x, and qρ∗(x) = sρ∗(x). All the terms have been re-used only in the G1

part; hence they look random and uncorrelated modulo p2 in the adver-

sary’s view. In other words, uniform randomness of the semi-functional pa-

rameters follows from uniform randomness modulo p2 of the following terms:

x1, x2, . . . , xn, ν, a, v
′
2, . . . , v

′
n2
, r′x, sδ∗(x). So this is a properly distributed semi-

functional ciphertext, and B has properly simulated the MasterLeakC game.

If on the other hand, if T = gz1, it is easy to see that the cipher-

text is normal since it has no G2 parts and B has properly simulated the

MasterLeakAbe game. �

Theorem 5.8. If the assumption Comp2 holds, the difference between the ad-

vantages of any PPT attacker when playing the MasterLeak0 and MasterLeak1/2

games with leakage (`MSK, `SK) on our ABE system with the unique attribute

restriction is negligible in λ.

127

Proof. We suppose we have a PPT attacker A whose advantage changes non-

negligibly between these two games. We will create a PPT algorithm B which

breaks the assumption Comp2 with non-negligible advantage. The simulator

B will play either the MasterLeak0 or the MasterLeak1/2 game with the attacker

A. Recall that in the former game, all keys are either semi-functional of type 2

or normal (according to the attacker’s choice) and the challenge key is normal.

The latter game is the same, except the challenge key is semi-functional of

type 1.

Setup phase: B picks α, a
R← ZN and for each attribute i ∈ U , it

chooses random si
R← ZN . It also picks n random exponents x1, x2, . . . , xn

R←

ZN . It gives the public parameters

PP = (N, g1, g3, g
a
1 , e(g1, g1)α, gx1

1 , . . . , g
xn
1 , ∀i ∈ U Ti = gsi1)

to A, where N , g1, and g3 are given by the challenger.

Phase 1: Knowing α, the simulator can generate a normal master

key as in the Setup algorithm and answer all secret key queries for normal keys

(remember that A queries for either a semi-functional or a normal key).

For semi-functional keys (of type 2), the simulator picks t, z1, . . . , zn ∈

ZN and random exponents ~ρ
R← Zn+1

N , ρn+2
R← ZN ,∀i ∈ S ρ′i

R← ZN for the

128

G3 part. It uses the following secret key:

SK =
(
S, ~K1, L,∀i ∈ S Ki

)
=

=

(
S,

(
gz11 , . . . , g

zn
1 , g

α
1 g

at
1

n∏
i=1

g−xizi1

)
∗ (gµ2 g

ρ
3)~ρ, gt1g

ρn+2

3 ,∀i ∈ S T ti g
ρ′i
3

)
,

where S is the set of attributes given by A and gµ2 g
ρ
3 comes from the challenger.

It is easy to see that this is a properly distributed semi-functional key of type

2.

For the challenge key, the simulator has to either give a normal key

or a semi-functional key of type 1. To do this, it will use the assumption’s

challenge term T . It picks z′1, . . . , z
′
n ∈ ZN and random exponents ~ρ

R← Zn+1
N ,

ρn+2
R← ZN ,∀i ∈ S ρ′i

R← ZN for the G3 part. It uses the secret key:

SK =
(
S, ~K1, L,∀i ∈ S Ki

)
=

=

(
S,

(
T z
′
1 , . . . , T z

′
n , gα1 T

a

n∏
i=1

T−xiz
′
i

)
∗ g~ρ3 , T g

ρn+2

3 ,∀i ∈ S T sig
ρ′i
3

)
It is easy to see that the G3 parts are properly distributed. For the G1 parts,

this always sets t = w and zi = sz′i for all i ∈ [1, n] (remember that T = gw1 g
σ
3

or gw1 g
κ
2g

σ
3). Thus this part is always well-distributed.

If T = gw1 g
κ
2g

σ
3 , the key has G2 parts as well and we can see that it is a

semi-functional key of type 1 with parameters:

~γ = κ
(
z′1, . . . , z

′
n, a−

∑
xiz
′
i

)
, θ = κ and qi = si.

Since the terms z′1, . . . , z
′
n, κ, si are random modulo p2, the key is properly

distributed.

129

Challenge Phase: The adversary A gives B two messages M0 and

M1 and an access structure, encoded as an n1×n2 LSSS matrix: (A∗, δ∗). The

simulator B chooses random values v′2, . . . , v
′
n2

R← ZN and for each row A∗x of

A∗ and one value r′x
R← ZN . Using the v′ values, it creates the vector ~v′ =(

1, v′2, . . . , v
′
n2

)
. It flips a random coin c

R← {0, 1} and outputs the ciphertext:

CT =
(

(A∗, δ∗), C0, ~C1,∀x Cx,∀x Dx

)
=

= ((A∗, δ∗),M · (e((gz1gν2), gα1)), ((gz1g
ν
2)x1 , . . . , (gz1g

ν
2)xn , (gz1g

ν
2)) ,

∀x (gz1g
ν
2)aA

∗
x·~v′(gz1g

ν
2)−r

′
xsδ∗(x) ,∀x (gz1g

ν
2)r
′
x

)
,

where gz1g
ν
2 is given from the assumption.

The ciphertext is semi-functional since

C0 = Mc · e (gz1g
ν
2 , g

α
1) = M · e(g1, g1)αz

(gz1g
ν
2)xi = (gxi1)zgνxi2 for i ∈ {1, 2, . . . , n}

(gz1g
ν
2) = gz1g

ν
2

(gz1g
ν
2)aA

∗
x·~v′(gz1g

ν
2)−r

′
xsδ∗(x) = g

aA∗x·z~v′
1 T

−zr′x
δ∗(x) · g

A∗x·aν ~v′−νr′xsδ∗(x)

2

for every row x of A∗

(gz1g
ν
2)r
′
x = g

zr′x
1 · gνr

′
x

2 for every row x of A∗

For the G1 parts, this implicitly sets s = z, ~v = z~v′, and rx = zr′x. Thus

all are properly distributed (remember that the first coordinate of ~v should be

z).

130

For the G2 parts, this sets ~δ = ν (x1, . . . , xn, 1), ~u = aν~v′, δ′x = −νr′x
and qρ∗(x) = sρ∗(x).

First, notice that qδ∗(x) = sδ∗(x) as in the challenge key if it happens to

be of type 1. This is what we want since the qi values used by KeyGenSf1 and

EncryptSf should be the same. We recall here that type 2 keys do not have qi

terms.

The remaining semi-functional parameters of both the challenge key (if

it is semi-functional of type 1) and the ciphertext are shown below:

Secret key
~γ = κ (z′1, . . . , z

′
n, a−

∑
xiz
′
i) θ = κ

Ciphertext
~δ = ν (x1, . . . , xn, 1) ~u = aν

(
1, v′2, . . . , v

′
n2

)
δx = −νr′x

We note that the first term of vector ~u is always equal to aν. Both a

and ν are “seen” by the adversary modulo p2: in the last coordinate of ~γ and

~δ, respectively (for the last of ~γ, we note that κ and all xi, z
′
i’s are seen in other

terms).

The first and easier case is when the attributes of the key satisfy the

challenge access structure. Then this is nominal with respect to the ciphertext

because:

~γ · ~δ − θu1 = κ
(
z′1, . . . , z

′
n, a−

∑
xiz
′
i

)
· ν (x1, . . . , xn, 1)− κaν = 0 mod p2

According to the rules of the game, this key can not be revealed to the

adversary, but only leakage is allowed on it.We can show that no PPT attacker

131

can have more than negligible advantage in distinguishing these two keys. The

required lemma is the following:

Lemma 5.9. We suppose the leakage is at most (`MSK = (n−1−2c) log(p2), `SK

= (n− 1− 2c) log(p2)), where c > 0 is a fixed positive constant. Then, for any

PPT adversary A, A’s advantage in the MasterLeak1 game changes only by a

negligible amount when the truly semi-functional challenge key is replaced by a

nominal semi-functional challenge key whenever A declares the challenge key

to have attributes which satisfy the challenge ciphertext’s access structure.

Proof. Throughout this proof we treat the master keys as a special form of

secret keys, i.e. the ones that have as attributes the entire universe U , which

satisfies all monotone access structures.

We suppose there exists a PPT algorithm A whose advantage changes

by a non-negligible amount ε when the MasterLeak1 game changes as described

above. Using A, we will create a PPT algorithm B which will distinguish

between the distributions (~δ, f(~τ)) and (~δ, f(~τ ′)) from Corollary B.1.1 with

non-negligible advantage (where m = n + 1 and p = p2). This will yield a

contradiction, since these distributions have a negligible statistical distance.

B simulates the game MasterLeak1 with A as follows. It starts by

running the Setupalgorithm for itself, and giving A the public parameters.

Since B knows the original master key and generators of all the subgroups, it

can make normal as well as semi-functional keys. Hence, it can respond to A’s

non-challenge Phase 1 queries by simply creating the queried keys.

132

With non-negligible probability, A must chose a challenge key in Phase

1 with attributes that satisfy the challenge ciphertext’s access structure. (If

it only did this with negligible probability, then the difference in advantages

whenever the attributes satisfy the access structure would be negligible.)

B will not create this challenge key, but instead will encode the leakage

A asks for on this key in Phase 1 as a single polynomial time computable

function f with domain Zn+1
p2

and with an image of size 2`SK (or 2`MSK). It

can do this by fixing the values of all other keys and fixing all other variables

involved in the challenge key (more details on this below). B then receives a

sample (~δ, f(~Γ)), where ~Γ is either distributed as ~τ or as ~τ ′, in the notation

of the corollary. B will use f(~Γ) to answer all of A ’s leakage queries on the

challenge key by implicitly defining the challenge key as follows.

B chooses r1, r2 ∈ Zp2 . We let g2 denote a generator of G2. B implicitly

sets the G2 components of the key to be g~γ2 and gθ2, where ~γ, θ are defined to

be

~γ = ~Γ +

(n︷ ︸︸ ︷
0, . . . , 0, r1

)
and θ = r2

Recall that ~Γ is of length n+ 1; thus r1 is added to the last component

of ~Γ. B defines the non-G2 components of the key to fit their appropriate

distribution.

At some point, A declares the access structure for the challenge ci-

phertext. If the challenge key had attributes that did not satisfy this access

133

structure, then B aborts the simulation and guesses whether ~Γ is orthogonal to

~δ randomly. However, the simulation continues with non-negligible probability.

B chooses a random element t2 ∈ Zp2 subject to the constraint δn+1r1−

t2r2 = 0 mod p2. It then constructs the challenge ciphertext, using ~δ and

u1 = t2 as the challenge vector (recall that ~δ is of length n+ 1). The remain-

ing parameters (semi-functional or not) are chosen according to EncryptSF

algorithm. Now, if ~Γ is orthogonal to ~δ, then the challenge key is nominally

semi-functional (and well-distributed as such). If ~Γ is not orthogonal to ~δ,

then the challenge key is truly semi-functional (and also well-distributed).

It is clear that B can easily handle Phase 2 queries, since the chal-

lenge key cannot be queried on here when its attributes satisfy the challenge

ciphertext’s access structure. Hence, B can use the output of A to gain a non-

negligible advantage in distinguishing the distributions (~δ, f(~τ)) and (~δ, f(~τ ′)).

This violates Corollary B.1.1, since these distributions have a negligible sta-

tistical distance for f with this output size. �

However, if the attributes of the key do not satisfy the challenge access

structure, the attacker can ask for the entire key to be revealed. In this

scheme, we use the unique attribute restriction to argue that the value of

u1 = aν is information-theoretically hidden modulo p2.

Since the attributes of the key do not satisfy the challenge access struc-

ture, the rowspace R ⊆ Zn2
N formed by the rows of A∗, whose attributes are

134

in S, does not include the vector (1, 0, . . . , 0). Otherwise, one could find ωx’s

such that
∑

δ∗(x)∈S ωxA
∗
x = (1, 0, . . . , 0) and decrypt. This means that there

is a vector ~w that is in the orthogonal complement of R, but not orthogonal

to (1, 0, . . . , 0). We can create a basis B of Zn2
N that includes ~w. Then we can

write ~u = f ~w + ~u′ where f ∈ ZN and ~u′ is generated by all the vectors of B

except ~w. But then we have that

u1 = ~u · (1, 0, . . . , 0) = f ~w · (1, 0, . . . , 0) + ~u′ · (1, 0, . . . , 0) .

Since ~u′ reveals no information about f and ~w is not orthogonal to (1, 0, . . . , 0),

the value of f is needed to determine the value of u1.

The only places where ~u (and hence f) appears modulo p2 are in the

exponents of the form (see EncryptSf algorithm)

A∗x · ~u+ δ′xqδ∗(x) for every row x

However, not all of these are affected by the value of f . More specifically, we

know that the rows for which the attribute δ∗(x) is in S (i.e. one of the key’s

attributes), hide the value of f since ~w is orthogonal to R.

For the remaining rows, we know that with certainty minus a negligible

probability, all multiplicative factors δ′x are not equal to 0 mod p2 and thus the

value of f is “masked” by the term δ′xqδ∗(x). Here is where we use the restriction

that each attribute in the access structure appears only once: Each of these

qδ∗(x) factors masks f entirely if it appears only once, since they are random

modulo p2. But this is true because they appear only in the access structure

135

for which the unique attribute restriction holds and the only key that could

have these terms is the challenge key (type 1). Therefore, the value of u1 seems

random to the adversary, as well. (This is proven the same way in [68].)

Phase 2: B works in the same way as in Phase 1.

The conclusion is that the attacker A plays either the MasterLeak0 or

the MasterLeak1/2 game, depending on the assumption. Thus, if it has a non-

negligible difference in the advantages, B can break the assumption Comp2

with non-negligible advantage. �

Theorem 5.10. If the assumption Comp2 holds, the difference between the ad-

vantages of any PPT attacker when playing the MasterLeak1/2 and MasterLeak1

games with leakage (`MSK, `SK) on our ABE system is negligible in λ.4

Proof. We assume we have a PPT attacker A with a non-negligible difference

in advantage between these two games. We will build a PPT algorithm B

which breaks assumption 3.2.2 with non-negligible advantage. The simulator

in this reduction works in the same way as in the previous one, with only one

difference: it picks ~h
R← Zn+1

N and generates the challenge key as:

SK =
(
S, ~K1, L,∀i ∈ S Ki

)
=

=

(
S,

(
T z
′
1 , . . . , T z

′
n , gα1 T

a

n∏
i=1

T−xiz
′
i

)
∗ (gµ2 g

ρ
3)
~h ∗ g~ρ3 , T g

ρn+2

3 ,

∀i ∈ S T sig
ρ′i
3

)

4For this theorem to be true the leakage bounds `MSK, `SK can take any values in N∪{0}.

136

The only difference from the previous simulator is the term (gµ2 g
ρ
3)
~h,

where gµ2 g
ρ
3 is given by the assumption.

If T = gw1 g
κ
2g

σ
3 , the semi-functional parameters of the challenge key and

the ciphertext are:

~γ = κ (z′1, . . . , z
′
n, a−

∑
xiz
′
i) + µ~h θ = κ

~δ = ν (x1, . . . , xn, 1) ~u = aν~v′

As before, qi = si for both the key and the ciphertext as they should

be. Also the new term re-randomizes the G2 part of ~K1 so the key is no longer

nominally semi-functional with respect to the ciphertext, i.e. ~γ · ~δ − θu1 = 0

no longer holds. It is obvious that the extra vector µ~h makes all parameters

random and uncorellated modulo p2. So in this case, the challenge key is a

well-distributed semi-functional key of type 1 and A plays game MasterLeak1/2

(all requested semi-functional keys of type 2, type 1 challenge key and the

remaining keys normal).

If T = gw1 g
σ
3 , the key is semi-functional of type 2 with parameters

~γ = µ~h. Thus A plays game MasterLeak1 (all requested semi-functional keys

and challenge key of type 2 and the remaining keys normal). �

By the two previous theorems we get immediately one-semi-functional

invariance:

Theorem 5.11. If the assumption Comp2 holds, our system has (`MSK, `SK)-

one semi-functional key invariance.

137

Proof. By theorems 5.8 and 5.10, we have that for any PPT adversary A∣∣∣AdvMasterLeak0
A,ΠABE (λ, `MSK, `SK)− Adv

MasterLeak1/2

A,ΠABE (λ, `MSK, `SK)
∣∣∣ ≤ negl(λ)∣∣∣AdvMasterLeak1/2

A,ΠABE (λ, `MSK, `SK)− AdvMasterLeak1
A,ΠABE (λ, `MSK, `SK)

∣∣∣ ≤ negl(λ).

By the triangle inequality and the fact that the sum of two negligible functions

is negligible, we get one semi-functional key invariance. �

Theorem 5.12. If the assumption Comp3 holds, our system has (`MSK, `SK)-

semi-functional security.5

Proof. We assume we have a PPT attacker A which breaks semi-functional

security with non-negligible advantage. We will construct a PPT algorithm B

which breaks the assumption Comp3 with non-negligible advantage. As always,

B that plays either the MasterLeakCK game or a final game with A , where

the advantage of any attacker is 0 in the final game because the ciphertext is

an encryption of a random message, independent of the bit c.

Setup phase: B picks a
R← ZN and for each attribute i ∈ U , it

chooses random si
R← ZN . It will use α from the assumption’s term gα1 g

ν
2 .

It also picks n random exponents x1, x2, . . . , xn
R← ZN . It gives the public

parameters

PP = (N, g1, g3, g
a
1 , e(g1, g1)α = e(gα1 g

ν
2 , g1), gx1

1 , . . . , g
xn
1 , ∀i ∈ U Ti = gsi1)

5For this theorem to be true the leakage bounds `MSK, `SK can take any values in N∪{0}.

138

to A, where N , g1, and g3 are given by the challenger.

Phase 1: All keys generated by B should be semi-functional keys of

type 2. For each one, the simulator picks t, z1, . . . , zn ∈ ZN , a random vector

~h
R← Zn+1

N for the G2 part and ~ρ
R← Zn+1

N , ρn+2
R← ZN , ∀i ∈ S ρ′i

R← ZN for the

G3 part. It creates the following secret key:

SK =
(
S, ~K1, L,∀i ∈ S Ki

)
=

=

(
S,

(
gz11 , . . . , g

zn
1 , (g

α
1 g

ν
2)gat1

n∏
i=1

g−xizi1

)
∗ g~h2 ∗ g

~ρ
3 , g

t
1g
ρn+2

3 ,

∀i ∈ S T ti g
ρ′i
3

)
,

where S is the set of attributes given by A and gα1 g
ν
2 comes from the

challenger. It is easy to see that this is a properly distributed semi-functional

key of type 2 with semi-functional parameters ~γ = ~h+ (0, . . . , 0, ν).

Challenge Phase: The adversary A gives B two messages M0 and

M1 and an access structure, encoded as a n1 × n2 LSSS matrix: (A∗, δ∗). The

simulator B chooses random values v′2, . . . , v
′
n2

R← ZN and for each row A∗x

of A∗, one value r′x
R← ZN . Using the v′ values, it creates the vector ~v′ =(

1, v′2, . . . , v
′
n2

)
. It flips a random coin c

R← {0, 1} and outputs the ciphertext:

CT =
(

(A∗, δ∗), C0, ~C1,∀x Cx,∀x Dx

)
=

= ((A∗, δ∗),M · e(T, gα1), ((gz1g
µ
2)x1 , . . . , (gz1g

µ
2)xn , (gz1g

µ
2)) ,

∀x (gz1g
µ
2)aA

∗
x·~v′(gz1g

µ
2)−r

′
xsδ∗(x) , ∀x (gz1g

µ
2)r

′
x

)
,

where gz1g
µ
2 is given from the assumption and T is the challenge term.

139

The ciphertext is semi-functional since

(gz1g
µ
2)xi = (gxi1)zgµxi2 for i ∈ {1, 2, . . . , n}

(gz1g
µ
2)aA

∗
x·~v′(gz1g

µ
2)−r

′
xsδ∗(x) = g

aA∗x·z~v′
1 T

−zr′x
δ∗(x) · g

A∗x·aµ~v′−µr′xsδ∗(x)

2

for every row x of A∗

(gz1g
µ
2)r

′
x = g

zr′x
1 · gµr

′
x

2 for every row x of A∗

For the G1 parts, this implicitly sets s = z, ~v = z~v′, and rx = zr′x.

Thus all G1 parts are properly distributed (remember that the first coordinate

of ~v should be z).

For the G2 parts, this sets ~δ = µ (x1, . . . , xn, 1), ~u = aµ~v′, δ′x = −µr′x
and qδ∗(x) = sδ∗(x). These are properly distributed modulo p2 because the terms

x1, . . ., xn, µ, a, v′2, . . ., v′n2
, r′x, sδ∗(x) are only seen modulo p1 elsewhere.

Phase 2: Here B works in the same way as in Phase 1.

If T = e(g1, g1)αz, the above is a properly distributed semi-functional

encryption of Mc. Otherwise, it is an encryption of a random message. Thus,

the advantage of any adversary in this case is 0. �

By theorems 5.7, 5.11, 5.12 we get that:

Theorem 5.13. Under the assumptions Comp1, Comp2, Comp3 and for (`MSK

= (n− 1− 2c) log(p2), `SK = (n− 1− 2c) log(p2)), where c > 0 is a fixed posi-

tive constant, our dual system encryption ABE scheme is (`MSK, `SK)-master-

leakage secure.

140

5.3 Leakage Fraction

Our systems allow the same absolute amount of leakage for both the

master and the secret keys. That is, `MSK = `SK = (n − 1 − 2c) log p2 bits,

where n is an arbitrary integer greater than or equal to 2 and c is a fixed

positive constant. Notice that the leakage depends only on the size of the

G2 subgroup, and not on the size of p1 or p3. Thus by varying the relative

sizes of the G1, G2, and G3 subgroups, we can achieve variable key sizes and

allow different fractions of the key size to be leaked. We use the term “leakage

fraction” to mean the number of bits allowed to be leaked from a key divided

by the number of bits required to represent that key.

Recall that p1, p2, p3 are primes of λ1, λ2, λ3 bits, respectively, and N =

p1p2p3 is the order of our group G. We assume that each group element is

represented by approximately λ1 + λ2 + λ3 = Θ(logN) bits. Then, by fixing

λ1 = c1λ, λ2 = λ, and λ3 = c3λ, where λ is the security parameter and

c1, c3 are arbitrary positive constants, we get that the leakage fractions of our

systems are the following:

The leakage fraction can be made arbitrarily close to 1 by modifying

n, c1 and c3 (if we assume a fixed universe size for ABE). Higher values of n give

a better leakage fraction, but larger public parameters, keys, and ciphertexts.

Smaller values of c1, c3 give a better leakage fraction, but also give fewer bits

of security in the G1 and G3 subspaces as a function of λ. We must choose λ

so that c1λ and c3λ are sufficiently large.

141

Scheme Master Key Secret Key

IBE n−1−2c
n+3

· 1
1+c1+c3

n−1−2c
n+2

· 1
1+c1+c3

ABE n−1−2c
n+2+|U| ·

1
1+c1+c3

n−1−2c
n+2+|S| ·

1
1+c1+c3

Table 5.1: c, c1, c3 are arbitrary positive constants and n is an integer greater
than 2. For the ABE scheme, |U| is the total number of attributes in the
system, i.e. the size of the universe, and |S| is the number of attributes of
the key in question. Notice that in the ABE scheme we ignored the size of
the representations of U and S. They are included in the keys, but they are
considered public; thus not included in the leakage fraction.

142

CHAPTER 6

Part II: Three Practical Constructions

In this chapter we present three prime order group constructions with ad-

vanced features. Namely we present two large universe ABE constructions

[98], both proved selectively secure in the standard model under suitable prime

order q-type assumptions, and a multi-authority CP-ABE scheme [97], which

is statically secure in the random oracle model under a third q-type assump-

tion. All of the schemes were designed with three major goals: practicality,

augmented functionality, and sufficiently strong security guarantees.

6.1 A Large-Universe KP-ABE System

In this section we present our large universe KP-ABE scheme from

[98]. We mention here that it can be converted to an HIBE scheme using non

repeating identities, “AND” policies and delegation capabilities (c.f. [74]). In

this setting the public parameters consist of the five terms (g, u, h, w, e(g, g)α),

143

which intuitively are utilized in two separate “layers” to achieve secure large

universe KP-ABE. In the “attribute layer”, the u, h terms provide a Boneh-

Boyen-style [21] hash function (uAh), while in the “secret sharing layer” the g

term holds the shares of the secret key α during key generations. The w term

is used to “bind” this layer to the u, h “attribute layer”.

6.1.1 Construction

Our scheme consists of the following four algorithms.

Setup(1λ)→ (PP,MSK): The setup algorithm calls the group gener-

ator algorithm G(1λ) and gets the descriptions of the groups and the bilinear

mapping D = (p,G,GT , e), where p is the prime order of the groups G and

GT . The attribute universe is U = Zp.

Then the algorithm picks the random terms g, u, h, w
R← G and α

R← Zp.

It outputs

PP = (D, g, u, h, w, e(g, g)α) MSK = (α)

KeyGen(MSK, (A, δ))→ SK: Initially the algorithm picks ~y = (α, y2,

. . . , yn)> where y2, . . . , yn
R← Zp. In the terminology of section 2.1, the master

secret key α is the secret to be shared among the shares. The vector of the

shares is

~λ = (λ1, λ2, . . . , λ`)
> = A~y

It then picks ` random exponents t1, t2, . . . , t`
R← Zp and for every τ ∈ [`]

144

it computes

Kτ,0 = gλτwtτ Kτ,1 =
(
uδ(τ)h

)−tτ
Kτ,2 = gtτ

The secret key is SK = ((A, δ), {Kτ,0, Kτ,1, Kτ,2}τ∈[`]).

Encrypt(m,S = {A1, A2, . . . , Ak} ⊆ Zp) → CT: Initially, the algo-

rithm picks k + 1 random exponents s, r1, r2, . . ., rk
R← Zp. It computes

C = m · e(g, g)αs, C0 = gs, and for every τ ∈ [k] it computes

Cτ,1 = grτ Cτ,2 = (uAτh)rτw−s

The ciphertext is CT = (S, C, C0, {Cτ,1, Cτ,2}τ∈[k]).

Decrypt {SK,CT} → m: The algorithm finds the set of rows in M that

provide a share to attributes in S, i.e. I = {i : δ(i) ∈ S}. Then it calculate

constants {ωi ∈ Zp}i∈I such that
∑

i∈I ωiAi = (1, 0, . . . , 0), where Ai is the

i-th row of the matrix A. According to the discussion in section 2.1, these

constants exist if the set S is an authorized set of the policy.

Then it calculates

B =
∏
i∈I

{e(C0, Ki,0)e(Cτ,1, Ki,1)e(Cτ,2, Ki,2)}ωi

where τ is the index of the attribute δ(i) in S (it depends on i). The algorithm

outputs m = C/B.

145

Correctness: If the attribute set S of the ciphertext is authorized, we have

that
∑

i∈I ωiλi = α. Therefore:

B =
∏
i∈I

e(g, g)sωiλie(g, w)stiωie(g, uδ(i)h)−rτ tiωie(g, uδ(i)h)rτ tiωie(g, w)−stiωi

= e(g, g)s
∑
i∈I ωiλi = e(g, g)αs

6.1.2 Security Proof

We will prove the following theorem regarding the selective security of

our KP-ABE scheme:

Theorem 6.1. If the q-DPBDH1 assumption holds, then all PPT adversaries

with a challenge attribute set of size k, where k ≤ q, have a negligible advantage

in selectively breaking our scheme.

Proof. To prove the theorem we will assume that there exists a PPT attacker

A with a challenge attribute set that satisfies the restriction, which has a non

negligible advantage AdvA in selectively breaking our scheme. Using this at-

tacker we will build a PPT simulator B that attacks the q-DPBDH1 assumption

with a non negligible advantage.

Initialization: Initially, B receives the given terms from the assump-

tion and an attribute set S∗ = {A∗1, A∗2, . . . , A∗k} ⊆ U .

Setup: Now, the simulator B has to provide A the public parameters

of the system. In order to do that it implicitly sets the master secret key of the

146

scheme to be α = xy, where x, y are set in the assumption. Notice that this

way α is properly distributed. Then B picks the random exponents ũ, h̃
R← Zp

and gives to A the following terms:

g = g w = gx

u = gũ ·
∏

i∈[k] g
y/b2i h = gh̃ ·

∏
i∈[k] g

xz/bi ·
∏

i∈[k]

(
gy/b

2
i

)−A∗i
e(g, g)α = e(gx, gy)

Since x is information-theoretically hidden from A, because it is multiplied

by y in α, the term w is properly uniformly random in G. The terms u, h

are properly distributed due to ũ, h̃ respectively. Notice that all terms can be

calculated by the simulator using suitable terms from the assumption and the

challenge set S∗ given by A.

Query phases 1 and 2: The simulator has to produce secret keys

for policies requested by A, for which the set S∗ is not authorized. In both

phases the treatment is the same. We describe here the way B works in order

to create a key for a policy (A, δ).

Since S∗ is non authorized for (A, δ), there exists a vector ~w = (w1, w2,

. . ., wn)> ∈ Zpn such that w1 = 1 and 〈Aτ , ~w〉 = 0 for all τ ∈ [`] such that

δ(τ) ∈ S∗ (c.f. section 2.1). The simulator calculates ~w using linear algebra.

The vector ~y that will be shared is implicitly

~y = xy ~w + (0, ỹ2, ỹ3, . . . , ỹn)>

where ỹ2, ỹ3, . . . , ỹn
R← Zp. This vector is properly distributed because its first

component is xy = α and the remaining components are uniformly random in

147

Zp. Therefore for each row τ ∈ [`] the share is

λτ = 〈Aτ , ~y〉 = xy〈Aτ , ~w〉+ 〈Aτ , (0, ỹ2, ỹ3, . . . , ỹn)>〉 = xy〈Aτ , ~w〉+ λ̃τ

As we mentioned above for each row τ for which δ(τ) ∈ S∗ it is true

that 〈Aτ , ~w〉 = 0. Therefore in this case λτ = λ̃τ = 〈Aτ , (0, ỹ2, ỹ3, . . . , ỹn)>〉;

hence its value is known to the simulator. In that case it picks tτ
R← Zp and

outputs the terms Kτ,0, Kτ,1, Kτ,2 as in the KeyGen algorithm.

On the other hand, for each row τ for which δ(τ) /∈ S∗ it picks t̃τ
R← Zp

and sets implicitly

tτ = −y〈Aτ , ~w〉+
∑
i∈[k]

xzbi〈Aτ , ~w〉
δ(τ)− A∗i

+ t̃τ

Since δ(τ) /∈ S∗ the above fractions are defined and tτ is properly

distributed due to t̃τ . The intuition behind this choice is that the y exponent

“raises” the power of w to the secret α = xy. However, this also results

to xyz/bi exponents from h. Thus, the cancellation is provided by the xzbi

exponents on the y/b2
i part. Now the simulator can compute the following

terms using the assumption:

Kτ,0 = gλτwtτ

= gxy〈Aτ , ~w〉+λ̃τ · g−xy〈Aτ , ~w〉+
∑
i∈[k]

x2zbi〈Aτ ,~w〉
δ(τ)−A∗

i · wt̃τ

= gλ̃τ ·
∏
i∈[n]

(
gx

2zbi
)〈Aτ , ~w〉/(δ(τ)−A∗i)

· wt̃τ

148

Kτ,1 = (uδ(τ)h)−tτ =

=

gδ(τ)ũ+h̃ ·
∏
i∈[k]

gxz/bi ·
∏
i∈[k]

gy(δ(τ)−A∗i)/b2i

y〈Aτ , ~w〉−
∑
i∈[k]

xzbi〈Aτ ,~w〉
δ(τ)−A∗

i

· (uδ(τ)h)−t̃τ

= gy〈Aτ , ~w〉(δ(τ)ũ+h̃)
∏
i∈[k]

g−xzbi(δ(τ)ũ+h̃)〈Aτ , ~w〉/(δ(τ)−A∗i)

·
∏
i∈[k]

gxyz〈Aτ , ~w〉/bi
∏

(i,j)∈[k,k]

g−(xz)2bj〈Aτ , ~w〉/bi(δ(τ)−A∗j)

·
∏
i∈[k]

gy
2〈Aτ , ~w〉(δ(τ)−A∗i)/b2i

∏
(i,j)∈[k,k]

g−xyz〈Aτ , ~w〉bj(δ(τ)−A∗i)/b2i (δ(τ)−A∗j)

· (uδ(τ)h)−t̃τ

= (gy)〈Aτ , ~w〉(δ(τ)ũ+h̃)
∏
i∈[k]

(
gxzbi

)−(δ(τ)ũ+h̃)〈Aτ , ~w〉/(δ(τ)−A∗i)

·
∏

(i,j)∈[k,k]

(
g(xz)2bj/bi

)−〈Aτ , ~w〉/(δ(τ)−A∗j) ∏
i∈[k]

(
gy

2/b2i

)〈Aτ , ~w〉(δ(τ)−A∗i)

·
∏

(i,j)∈[k,k]

i 6=j

(
gxyzbj/b

2
i

)−〈Aτ , ~w〉(δ(τ)−A∗i)/(δ(τ)−A∗j)

· (uδ(τ)h)−t̃τ

Kτ,2 = gtτ

= (gy)−〈Aτ , ~w〉 ·
∏
i∈[k]

(
gxzbi

)〈Aτ , ~w〉/(δ(τ)−A∗i) · gt̃τ

Therefore B can reply to A’s query with the entire secret key SK =

((A, δ), {Kτ,0, Kτ,1, Kτ,2}τ∈[`]).

Challenge: The attacker will output a pair of messages (M0,M1)

of the same length. In this phase the simulator flips a random coin b
R←

{0, 1} and sets implicitly s = z from the q-DPBDH1 assumption. Also, it sets

149

rτ = bτ for every level τ ∈ [k]. These parameters are properly distributed since

z, b1, . . . , bq are information-theoretically hidden from the attacker’s view. Now

the simulator can compute the following terms using the assumption:

C = Mb · T C0 = gs = gz

Cτ,1 = grτ = gbτ

Cτ,2 = (uA
∗
τh)rτ · w−s

= gbτ (ũA∗τ+h̃) ·
∏
i∈[k]

gxzbτ/bi
∏
i∈[k]

gybτ(A
∗
k−A

∗
i)/b2i · g−xz

=
(
gbτ
)ũA∗τ+h̃ ·

∏
i∈[k]

i 6=τ

gxzbτ/bi
∏
i∈[k]

i 6=τ

(
gybτ/b

2
i

)A∗τ−A∗i

As one can see, the choice of rτ = bτ “raises” one of the xz/bi compo-

nents to xz and achieves the cancellation with w−s. The simulator hands over

the ciphertext CT =
(
S∗, C, C0, {Cτ,1, Cτ,2}τ∈[k]

)
to the attacker A.

Guess: After the query phase 2, where the simulator creates the secret

keys as described above, the attacker outputs a guess b′ for the challenge bit.

If b′ = b the simulator outputs 0, i.e. it claims that the challenge term is

T = e(g, g)xyz. Otherwise, it outputs 1.

If T = e(g, g)xyz then A played the proper security game, because

C = Mb · T = Mb · e(g, g)αs. On the other hand, if T is a random term of GT

then all information about the message Mb is lost in the challenge ciphertext.

Therefore the advantage of A is exactly 0. As a result if A breaks the proper

security game with a non negligible advantage, then B has a non negligible

advantage in breaking the q-DPBDH1 assumption. �

150

6.2 A Large-Universe CP-ABE System

In this section we present our large universe CP-ABE construction from

[98]. The public parameters consist of the six group elements (g, u, h, w,

v, e(g, g)α), which intuitively are utilized in two separate “layers” to achieve

secure large universe CP-ABE. In the “attribute layer”, the u, h terms provide

a Boneh-Boyen-style [21] hash function (uAh), while in the “secret sharing

layer” the w term holds the secret randomness r during key generation and

the shares of the secret randomness s during encryption. The v term is used to

“bind” the two layers together. The g and e(g, g)α terms are used to introduce

the master secret key functionality and allow correct decryption.

We see here that the “layered” construction is the same as the KP-ABE

construction. However, we notice an extra term in binding the two main layers.

This is because the master secret key α is no longer split in shares during key

generation and is appearing as an exponent of the group generator g. Due to

the extra binding term we need the extra functionality in the more complex

assumption q-DPBDH2 provided by the powers of a.

6.2.1 Construction

Our scheme consists of the following four algorithms:

Setup(1λ)→ (PP,MSK): The setup algorithm calls the group gener-

ator algorithm G(1λ) and gets the descriptions of the groups and the bilinear

mapping D = (p,G,GT , e), where p is the prime order of the groups G and

GT . The attribute universe is U = Zp.

151

Then the algorithm picks the random terms g, u, h, w, v
R← G and α

R←

Zp. It outputs

PP = (D, g, u, h, w, v, e(g, g)α) MSK = (α)

KeyGen(MSK,S = {A1, A2, . . . , Ak} ⊆ Zp) → SK: Initially, the key

generation algorithm picks k+1 random exponents r, r1, r2, . . . , rk
R← Zp. Then

it computes K0 = gαwr, K1 = gr, and for every τ ∈ [k]

Kτ,2 = grτ and Kτ,3 = (uAτh)rτv−r

The secret key output is SK = (S, K0, K1, {Kτ,2, Kτ,3}τ∈[k]).

Encrypt(M ∈ GT , (A, δ)) → CT: The encryption algorithm takes the

plaintext message M and picks ~y = (s, y2, . . ., yn)>
R← Zn×1

p . In the terminol-

ogy of section 2.1, s is the random secret to be shared among the shares. The

vector of the shares is

~λ = (λ1, λ2, . . . , λ`)
> = M~y

It then picks ` random exponents t1, t2, . . . , t`
R← Zp and calculates

C = M · e(g, g)αs, C0 = gs, and for every τ ∈ [`]

Cτ,1 = wλτvtτ , Cτ,2 = (uδ(τ)h)−tτ and Cτ,3 = gtτ

The ciphertext output is CT = ((A, δ), C, C0, {Cτ,1, Cτ,2, Cτ,3}τ∈[`]).

Decrypt {SK,CT} → m: Firstly, the decryption algorithm calculates

the set of rows in A providing a share to attributes in S, i.e. I = {i : δ(i) ∈ S}.

152

Then it computes the constants {ωi ∈ Zp}i∈I such that
∑

i∈I ωiAi = (1, 0, . . .,

0), where Ai is the i-th row of the matrix A. According to the discussion in

section 2.1, these constants exist if the set S is an authorized set of the policy.

Then it calculates

B =
e(C0, K0)∏

i∈I {e(Ci,1, K1)e(Ci,2, Kτ,2)e(Ci,3, Kτ,3)}ωi

where τ is the index of the attribute δ(i) in S (it depends on i). The algorithm

outputs M = C/B.

Correctness: If the attribute set S of the secret key is authorized, we have

that
∑

i∈I ωiλi = s. Therefore:

B =
e(g, g)αse(g, w)rs∏

i∈I e(g, w)rωiλie(g, v)rtiωie(g, uδ(i)h)−rτ tiωie(g, uδ(i)h)rτ tiωie(g, v)−rtiωi

=
e(g, g)αse(g, w)rs

e(g, w)r
∑
i∈I ωiλi

= e(g, g)αs

6.2.2 Security Proof

We will prove the following theorem regarding the selective security of

our CP-ABE scheme:

Theorem 6.2. If the q-DPBDH2 assumption holds then all PPT adversaries

with a challenge matrix of size `×n, where `, n ≤ q, have a negligible advantage

in selectively breaking our scheme.

153

Proof. To prove the theorem we will assume that there exists a PPT attacker A

with a challenge matrix that satisfies the restriction, which has a non negligible

advantage AdvA in selectively breaking our scheme. Using this attacker we will

build a PPT simulator B that attacks the q-DPBDH2 assumption with a non

negligible advantage.

Initialization: B receives the given terms from the assumption and a

challenge policy (A∗, δ∗) from A. We have that A∗ is an ` × n matrix, where

`, n ≤ q, and δ∗ : [`]→ Zp.

Setup: The simulator B has to provide A the public parameters of

the system. In order to do that it implicitly sets the master secret key of

the scheme to be α = aq+1 + α̃, where a, q are set in the assumption and

α̃
R← Zp is a known to B random exponent. Notice that this way α is correctly

distributed and a is information-theoretically hidden from A. Then B picks

the random exponents ṽ, ũ, h̃
R← Zp and using the assumption gives to A the

following public parameters:

g = g w = ga

v = gṽ ·
∏

(j,k)∈[`,n]

(
ga

k/bj

)A∗j,k
u = gũ ·

∏
(j,k)∈[`,n]

(
ga

k/b2j

)A∗j,k
h = gh̃ ·

∏
(j,k)∈[`,n]

(
ga

k/b2j

)−δ∗(j)A∗j,k
e(g, g)α = e(ga, aa

q
) · e(g, g)α̃

Since a is information-theoretically hidden from A, the term w is properly

uniformly random in G. The terms v, u, h are properly distributed due to

ṽ, ũ, h̃ respectively. Notice that all terms can be calculated by the simulator

using suitable terms from the assumption and the challenge policy given by

154

A.

As one can see, the “attribute layer”, which consists of the terms u, h,

is made up of terms whose exponents have b2
i in the denominator, the “binder

term” v has bi, and the “secret sharing layer” w has only one power of a. This

scaling of the powers of bi will allow our simulator to properly simulate all

terms.

Query phases 1 and 2: Now the simulator has to produce secret

keys for non authorized sets of attributes requested by A. In both phases the

treatment is the same. We describe here the way B works in order to create a

key for an attribute set S =
{
A1, A2, . . . , A|S|

}
received by A.

Since S is non authorized for (A∗, δ∗), there exists a vector ~w = (w1,

w2, . . ., wn)> ∈ Zpn such that w1 = −1 and 〈A∗i , ~w〉 = 0 for all i ∈ I =

{i|i ∈ [`] ∧ δ∗(i) ∈ S} (c.f. section 2.1). The simulator calculates ~w using

linear algebra. Then it picks r̃
R← Zp and implicitly sets

r = r̃ + w1a
q + w2a

q−1 + . . .+ wna
q+1−n = r̃ +

∑
i∈[n]

wia
q+1−i

This is properly distributed due to r̃. Then using the suitable terms

from the assumption it calculates:

K0 = gαwr = ga
q+1

gα̃gar̃
∏
i∈[n]

gwia
q+2−i

= gα̃ (ga)r̃
n∏
i=2

(
ga

q+2−i
)wi

K1 = gr = gr̃
∏
i∈[n]

(
ga

q+1−i
)wi

155

Additionally, for all τ ∈ [|S|] it has to compute the terms Kτ,2 = grτ

and Kτ,3 = (uAτh)rτv−r. The common part v−r for these terms is the following:

v−r = v−r̃

gṽ ∏
(j,k)∈[`,n]

ga
kA∗j,k/bj

−
∑
i∈[n] wia

q+1−i

= v−r̃
∏
i∈[n]

(
ga

q+1−i
)−ṽwi

·
∏

(i,j,k)∈[n,`,n]

g−wiA
∗
j,ka

q+1+k−i/bj

= v−r̃
∏
i∈[n]

(
ga

q+1−i
)−ṽwi

·
∏

(i,j,k)∈[n,`,n]

i 6=k

(
ga

q+1+k−i/bj
)−wiA∗j,k

︸ ︷︷ ︸
Φ

·
∏

(i,j)∈[n,`]

g−wiA
∗
j,ia

q+1/bj

= Φ ·
∏
j∈[`]

g−〈~w,A
∗
j 〉aq+1/bj

= Φ ·
∏
j∈[`]

δ∗(j)/∈S

g−〈~w,A
∗
j 〉aq+1/bj

The Φ part can be calculated by the simulator using the assumption,

while the second part has to be canceled by the (uAτh)rτ part. So for every

attribute Aτ ∈ S the simulator sets implicitly

rτ = r̃τ + r ·
∑
i′∈[`]

δ∗(i′)/∈S

bi′

Aτ − δ∗(i′)

= r̃τ + r̃ ·
∑
i′∈[`]

δ∗(i′)/∈S

bi′

Aτ − δ∗(i′)
+

∑
(i,i′)∈[n,`]

δ∗(i′)/∈S

wibi′a
q+1−i

Aτ − δ∗(i′)

156

Where r̃τ
R← Zp and therefore rτ is properly distributed. The use of

the bi’s in the numerators of the fractions is explained by the “layer” intuition

presented before. Namely, these bi will cancel with the b2
i denominators in the

“attribute layer” and provide a cancellation for the unknown part of v−r.

Also, notice that rτ is well-defined only for attributes in the specific

unauthorized set S or unrelated attributes (outside the policy), since the sum

is over the i′ such that δ∗(i′) /∈ S. Therefore, for all Aτ ∈ S or Aτ /∈ δ∗([`]), the

denominators Aτ − δ∗(i′) are non zero. If the simulator tries to include more

attributes of the policy in the key (and possibly make a key for an authorized

set), he would have to divide by zero (c.f. Figure 6.1).

Zp
δ∗([`]) S

Figure 6.1: The simulator can not create the components for attributes in the
gray area.

157

Therefore the first part of Kτ,3 = (uAτh)rτv−r is:

(uAτh)rτ =

gũAτ+h̃
∏

(j,k)∈[`,n]

g(Aτ−δ∗(j))A∗j,ka
k/b2j

r̃·
∑
i′∈[`],δ∗(i′)/∈S

bi′
Aτ−δ∗(i′)

·

gũAτ+h̃
∏

(j,k)∈[`,n]

g(Aτ−δ∗(j))A∗j,ka
k/b2j


∑

(i,i′)∈[n,`],δ∗(i′)/∈S
wibi′a

q+1−i

Aτ−δ∗(i′)

· (uAτh)r̃τ

= (Kτ,2/g
r̃τ)ũAτ+h̃ ·

∏
(i′,j,k)∈[`,`,n]

δ∗(i′)/∈S

gr̃(Aτ−δ
∗(j))A∗j,kbi′a

k/(Aτ−δ∗(i′))b2j

·
∏

(i,i′,j,k)∈[n,`,`,n]

δ∗(i′)/∈S

g(Aτ−δ∗(j))wiA∗j,kbi′a
q+1+k−i/(Aτ−δ∗(i′))b2j · (uAτh)r̃τ

= Ψ ·
∏

(i,j)∈[n,`]

δ∗(j)/∈S

g(Aτ−δ∗(j))wiA∗j,ibjaq+1+i−i/(Aτ−δ∗(j))b2j

= Ψ ·
∏
j∈[`]

δ∗(j)/∈S

g〈~w,A
∗
j 〉aq+1/bj

Where Ψ = (uAτh)r̃τ · (Kτ,2/g
r̃τ)ũAτ+h̃

·
∏

(i′,j,k)∈[`,`,n]

δ∗(i′)/∈S

(
gbi′a

k/b2j

)r̃(Aτ−δ∗(j))A∗j,k/(Aτ−δ∗(i′))

·
∏

(i,i′,j,k)∈[n,`,`,n]

δ∗(i′)/∈S,(j 6=i′∨i 6=k)

(
gbi′a

q+1+k−i/b2j

)(Aτ−δ∗(j))wiA∗j,k/(Aτ−δ
∗(i′))

and Kτ,2 = grτ = gr̃τ ·
∏
i′∈[`]

δ∗(i′)/∈S

(
gbi′
)r̃/(Aτ−δ∗(i′)) · ∏

(i,i′)∈[n,`]

δ∗(i′)/∈S

(
gbi′a

q+1−i
)wi/(Aτ−δ∗(i′))

The Ψ and Kτ,2 terms can be calculated using the suitable terms of our

158

assumption1. The second part of (uAτh)rτ cancels exactly with the problematic

part of v−r. Therefore the simulator can calculate Kτ,2 and Kτ,3 for all Aτ ∈

S and hand over the secret key SK = (S, K0, K1, {Kτ,2, Kτ,3}τ∈[|S|]) to the

attacker A.

Challenge: The attacker will output a pair of messages (M0,M1) of

the same length. In this phase the simulator flips a random coin b
R← {0, 1}

and constructs

C = Mb · T · e(g, gs)α̃ and C0 = gs

where T is the challenge term and gs the corresponding term of the

assumption.

The simulator sets implicitly ~y = (s, sa+ ỹ2, sa2 + ỹ3, . . ., san−1 + ỹn)>,

where ỹ2, ỹ3, . . ., ỹn
R← Zp. We see that the secret s and the vector ~y are

properly distributed, since s was information theoretically hidden from A and

the ỹi’s are picked uniformly at random. As a result, since ~λ = A∗~y we have

that

λτ =
∑
i∈[n]

A∗τ,isa
i−1 +

n∑
i=2

A∗τ,iỹi =
∑
i∈[n]

A∗τ,isa
i−1 + λ̃τ

for each row τ ∈ [`]. Notice that the terms λ̃τ =
∑n

i=2A
∗
τ,iỹi are known

to the simulator. For each row the simulator B sets implicitly tτ = −sbτ . This

1Notice that for the products of Ψ we can have j = i′, but in that case the power of a is
different than q + 1. So the simulator can use the ga

i/bj terms.

159

is properly distributed as well, because the bi’s are information theoretically

hidden from the attacker. Using the above, B calculates:

Cτ,1 = wλτvtτ = wλ̃τ ·
∏
i∈[n]

gA
∗
τ,isa

i ·
(
gsbτ
)−ṽ · ∏

(j,k)∈[`,n]

g−A
∗
j,ka

ksbτ/bj =

= wλ̃τ ·
(
gsbτ
)−ṽ ·∏

i∈[n]

gA
∗
τ,isa

i ·
∏
k∈[n]

g−A
∗
τ,ka

ksbτ/bτ ·
∏

(j,k)∈[`,n]

j 6=τ

g−A
∗
j,ka

ksbτ/bj =

= wλ̃τ ·
(
gsbτ
)−ṽ · ∏

(j,k)∈[`,n]

j 6=τ

(
gsa

kbτ/bj
)−A∗j,k

Cτ,2 =
(
uδ
∗(τ)h

)tτ
=
(
gsbτ
)−(ũδ∗(τ)+h̃) ·

 ∏
(j,k)∈[`,n]

g(δ∗(τ)−δ∗(j))A∗j,ka
k/b2j

−sbτ

=
(
gsbτ
)−(ũδ∗(τ)+h̃) ·

∏
(j,k)∈[`,n]

j 6=τ

(
gsa

kbτ/b2j

)−(δ∗(τ)−δ∗(j))A∗j,k

Cτ,3 = gtτ =
(
gsbτ
)−1

Notice that by using tτ = −sbτ we “raised” the exponents of the

“binder” term v so that they cancel with the unknown powers of wλτ . There-

fore, the simulator hands over the ciphertext CT = ((A∗, δ∗), C, C0, {Cτ,1,

Cτ,2, Cτ,3}τ∈[`]) to the attacker A.

Guess: After the query phase 2, where the simulator creates the secret

keys as described above, the attacker outputs a guess b′ for the challenge bit.

If b′ = b the simulator outputs 0, i.e. it claims that the challenge term is

T = e(g, g)sa
q+1

. Otherwise, it outputs 1.

160

If T = e(g, g)sa
q+1

then A played the proper security game, because

C = Mb · T · e(g, gs)α̃ = Mb · e(g, g)αs. On the other hand, if T is a random

term of GT then all information about the message Mb is lost in the challenge

ciphertext. Therefore the advantage of A is exactly 0. As a result if A breaks

the proper security game with a non negligible advantage, then B has a non

negligible advantage in breaking the q-DPBDH2 assumption. �

6.3 A Large-Universe Multi-Authority CP-ABE Sys-
tem

Our scheme in [97] constitutes an augmented version of the Lewko-

Waters [73] CP-ABEconstruction and shares several of the existing techniques.

Namely in order to allow for multiple authorities and prevent collusion between

users’ keys it utilizes a hash function H that maps global identities to group

elements. This hash function is modeled as a Random Oracle in the security

proof. We combined this technique with the technique from [112] that used

a hash function F that hashes attributes to group elements; also modeled

as a Random Oracle. This way we achieved a large universe construction

and at the same time we overcome the restriction that each attribute is used

only once. This is because the policies are not any more controlled by the

authorities, but by the underlying attributes. And the Random Oracle usage

naturally overcomes the “one-time” restriction. Finally in order to “bound”

the different ciphertext terms together we use two secret sharing vectors: one

that shares the secret z of the blinding factor and one that shares 0. In order

161

to decrypt someone has to use them both; therefore collusion on decryption

from different users is prevented.

6.3.1 Construction

Our proposed scheme consists of the following five algorithms:

GlobalSetup(1λ)→ GP: The global setup algorithm takes as input the

security parameter λ and chooses a bilinear group of prime order p ∈ Θ(2λ). It

also choses a function H mapping global identities GID to elements of G and

another function F mapping strings, interpreted as attributes, to elements of

G. Both of these functions will be modeled as random oracles in the security

proof.

We denote by UΘ the set of authorities and U the set of attributes.

We assume that each attribute belongs to only one authority and it is easy to

find the corresponding authority. UΘ is of polynomial size, while U may be of

exponential size in the security parameter.

The algorithm outputs the global parameters GP = {p,G, H, F}.

AuthSetup(GP)→ {PK, SK}: The authority setup algorithm chooses

two random exponents α, y ∈ Zp and publishes PK = {e(g, g)α, gy} as its

public key. It keeps SK = {α, y} as its secret key.

KeyGen(GID, θ, u, SK,GP) → {Kθ,u,GID,K
′
θ,u,GID}: The key genera-

tion algorithm takes as input the user’s global identifier GID, the identifier θ

of the authority, the attribute u to create a key for as well as the authority’s

162

secret key and the global parameters.

The algorithm first chooses a fresh random t
R← Zp and it computes:

Kθ,u,GID = gαθH(GID)yθF (u)t, K′θ,u,GID = gt

Encrypt(M, (A, ρ, δ),GP, {PK}) → CT: The encryption algorithm

takes in a message M , an ` × n access matrix A with ρ mapping its rows

to authorities and δ mapping rows to attributes for each authority. The al-

gorithm also takes in global parameters, and the public keys of the relevant

authorities. We use the notation (e(g, g)αθ , gyθ) to refer to the public key of

authority θ.

The algorithm first chooses a random z ∈ Zp and a random vector

~v ∈ Znp with z as its first entry. We let λx denote the share
〈
~Ax, ~v

〉
, where ~Ax

is row x of A. It also chooses a random vector ~w ∈ Znp with 0 as its first entry.

We let ωx denote the share
〈
~Ax, ~w

〉
.

For each row x of A, it chooses a random tx ∈ Zp. The ciphertext is

computed as:

C0 = Me(g, g)s

{C1,x = e(g, g)λxe(g, g)αρ(x)tx , C2,x = g−tx ,

C3,x = gyρ(x)txgωx , C4,x = F (δ(x))tx}x∈[`]

Decrypt(CT, {Kθ,u,GID},GP) → M : We assume the ciphertext is en-

crypted under an access matrix (A, ρ, δ). To decrypt, the decryptor first com-

163

putes H(GID). If the decryptor has the secret keys {Kρ(x),δ(x),GID} for a subset

of rows ~Ax of A such that (1, 0, . . . , 0) is in the span of these rows, then the

decryptor proceeds as follows:

For each such x, the decryptor computes:

C1,x · e(Kρ(x),δ(x),GID, C2,x) · e(H(GID), C3,x) · e(K′ρ(x),δ(x),GID, C4,x)

= e(g, g)λxe(H(GID), g)ωx

The decryptor then chooses constants cx ∈ Zp such that
∑

x cx
~Ax =

(1, 0, . . . , 0) and computes:

∏
x

(
e(g, g)λxe(H(GID), g)ωx

)cx
= e(g, g)z

We recall that λx =
〈
~Ax, ~v

〉
and ωx =

〈
~Ax, ~w

〉
, where 〈(1, 0, . . . , 0), ~v〉 = s

and 〈~w, (1, 0, . . . , 0)〉 = 0. The message can then be obtained as:

M = C0/e(g, g)z

Remark 6.3. Notice that for the users’ secret keys and the ciphertexts a re-

randomizing technique is applicable using only the public parameters. Namely,

if someone has a key (Kθ,u,GID, K′θ,u,GID), he can acquire a new key for (GID,

θ, u) by picking t′
R← Zp and constructing (Kθ,u,GIDF (u)t

′
, K′θ,u,GIDg

t′). For the

ciphertext the re-randomization can be done by picking new random vectors

~v′, ~w′ with the first element 0 and new t′x
R← Zp. Then the re-randomized terms

164

for row x are

(C1,xe(g, g)〈 ~Ax,~v′〉e(g, g)αρ(x)t
′
x , C2,xg

−t′x , C3,xg
yρ(x)t

′
xg〈 ~Ax, ~w′〉, C4,xF (δ(x))tx)

We will use these re-randomizing techniques in our security reduction to pro-

vide properly distributed components.

6.3.2 Security Proof

In our security proof we combined several techniques, which we think

might be of independent interest in the study of CP-ABE systems. The first

technique allows the simulator of our reduction to isolate an unauthorized set of

rows and essentially ignore it for the remaining of the security reduction. It can

ignore the contributions of these rows even in the construction of the challenge

ciphertext. In our case the simulator does that for the corrupt authorities,

which are controlled by the adversary. The claim that makes this technique

possible is shown below and the proof is in appendix B. The claim allows the

simulator to “zero-out” a subset of columns for the unauthorized set.

Claim 6.4. Let A ∈ Z`×np be the secret sharing matrix of a linear secret sharing

scheme for an access policy A and let C ⊆ [`] be a non-authorized set of rows.

Let c ∈ N be the dimension of the subspace spanned by the rows of C.

Then the distribution of the shares {λx}x∈[`] sharing the secret z ∈

Zp generated with the matrix A is the same as the distribution of the shares

{λ′x}x∈[`] sharing the secret z ∈ Zp generated with some matrix A′, where

A′x,j = 0 for x ∈ C and j ∈ [n− c] (see figure 6.2).

165

Moreover A′ is computable from A in polynomial time.

Another technique utilized in the security proof is the “splitting” of the

unknown parameters to two different vectors. Namely the secret sharing vector

~v will hold the secret saq+1 on only the first position and the zero sharing vector

~w will hold the unknown terms saq, saq−1, . . . , sa2 on all positions but the first.

During the generation of the secret keys these terms are “recombined” to give

a full series of q terms that are canceled by the attribute term.

Our main theorem is the following:

Theorem 6.5. If the q-DPBDHE assumption holds, then all PPT adversaries

with a challenge matrix of size at most q × q have a negligible advantage in

statically breaking our scheme in the Random Oracle Model.

Proof. In order to prove the theorem we assume that there exists a PPT

adversary Adv that breaks the scheme with more than negligible advantage

and we show how to construct a PPT algorithm B that simulates the static

security game with Adv and breaks the q-DPBDHE assumption. Our simulator

works as follows:

Global Parameters: Initially, it gets (D,T) from its q-DPBDHE

challenger and sends the public parameters GP = (G, p, g) to Adv. The two

random oracles H,F will be programmed by the simulator.

Static security: According to the static security game, the attacker

Adv outputs a set of corrupt authorities CΘ ⊆ UΘ. It also outputs the sequence

166

A =


A1,1 A1,2 . . . A1,n

A2,1 A2,2 . . . A2,n

A3,1 A3,2 . . . A3,n
...

...
. . .

...
A`,1 A`,2 . . . A`,n

 A′ =


0 . . . 0 A′1,n−c+1 . . . A′1,n
A′2,1 . . . A′2,n−c A′2,n−c+1 . . . A′2,n

0 . . . 0 A′3,n−c+1 . . . A′3,n
...

. . .
...

...
. . .

...
A′`,1 . . . A′1,n−c A′1,n−c+1 . . . A′`,n


Figure 6.2: Transformation of the policy matrix A to be used by the simulator.
Rows that belong to corrupted authorities are highlighted.

Q = {(GIDi, Si)}mi=1 of the secret key queries, where Si ⊆ (UΘ \ CΘ)×U , and

sends two messages (M0,M1) ∈ G2
T with a challenge policy (A, ρ, δ), where

A ∈ Z`×np , ρ : [`]→ UΘ, and δ : [`]→ U .

Since we are in the Random Oracle Model, the attacker also outputs

a sequence LID of global identities for the H oracle queries and a sequence

L ⊆ U of attributes for the F oracle queries. W.l.o.g. we assume that all global

ID’s and all attributes present in Q are queried on their respective oracle.

In order to proceed, the simulator substitutes the secret sharing matrix

A with the matrix A′ from 6.4. After B calculates the matrix A′ (shown

in figure 6.2) where C = CΘ it proceeds to compute all the inputs to Adv.

According to the above claim, if B uses A′ instead of A in the simulation the

view of Adv in this game is information-theoretically the same as if it used the

given matrix A. In the remaining of the proof, we use n′ = n− c.

Authority Public Keys: The simulator has to provide the public

keys of all non-corrupted authorities. To do that it considers two cases:

167

If the authority in question, θ, is not in the challenge policy, i.e. θ /∈

ρ[`] ∪ CΘ, the simulator B picks αθ, yθ
R← Zp itself and outputs the public key

(e(g, g)αθ , gyθ)

For each authority θ ∈ ρ[`] \ CΘ, let X = {x|ρ(x) = θ} ⊆ [`]. This is

the set of rows in the challenge policy that belong to authority θ. Then the

simulator B picks α̃θ, ỹθ
R← Zp and sets implicitly

αθ = α̃θ +
∑
x∈X

bxa
q+1A′x,1 and yθ = ỹθ +

∑
x∈X

n′∑
j=2

bxa
q+2−jA′x,j

It outputs the public key

(e(g, g)αθ , gyθ) =

(
e(g, g)α̃θ

∏
x∈X

e(gbxa, ga
q

)A
′
x,1 , gỹθ

∏
x∈X

n′∏
j=2

(
gbxa

q+2−j
)A′x,j)

Since n′ = n − c ≤ q and ` ≤ q, the simulator can compute all these

terms using suitable terms of the assumption. Also due to α̃θỹθ these terms

are properly distributed.

H-Oracle Queries: If the queried global identity GID is in LID but

not in {GIDi}i∈[m], then the simulator outputs a random element of G for

H(GID). These elements are not going to be used anywhere else.

If the queried global identity is equal to GIDi for some i and there is

no row x such that (ρ(x), δ(x)) ∈ Si (i.e. if this user is not entitled to any

shares), then the simulator picks h̃i
R← Zp and outputs

H(GIDi) = gh̃i · ga · ga2 · · · · · gan
′−1

= gh̃i
n′∏
k=2

ga
k−1

168

Otherwise, we should consider the case where for some rows X ′ ⊆ [`] it

is true that (ρ(x), δ(x)) ∈ Si. According to our restriction we know that the

set of these rows together with the set of the rows that belong to corrupted

authorities is non-authorized. This means that there exists a vector ~di ∈ Znp

such that the first element is di,1 = 1 and the inner product of it with any of

the aforementioned rows is equal to zero.

Additionally, according to the construction of A′ we know that the set of

the corrupted rows spans the entire subspace of dimension c. That means the

vector ~di is orthogonal to any of the vectors (

n′︷ ︸︸ ︷
0, . . . , 0,

c︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0) ∈ Znp .

These are the vectors with exactly one “1” in one of the last c positions. This

implies that di,j = 0 for n − c + 1 ≤ j ≤ n. Hence
〈
~A′x,

~di

〉
= 0 even if we

restrict the row ~A′x and the vector ~di to the first n′ = n− c positions. We will

denote this inner product by
〈
~A′x,

~di

〉
.

In this case the simulator picks h̃i
R← Zp and outputs

H(GIDi) = gh̃i · (ga)di,2 · (ga2

)di,3 · · · · · (gan
′−1

)di,n′ = gh̃i
n′∏
k=2

(
ga

k−1
)di,k

F -Oracle Queries: Let θ be the authority of the queried attribute

u. Then if θ /∈ ρ[`] or θ ∈ CΘ, the simulator outputs a random element of G

for F (u) and stores the value so that he might reuse it in a secret key query.

If θ ∈ ρ[`], let X = {x|ρ(x) = θ} ⊆ [`]. Then if u /∈ δ[`] (i.e. the

attribute is not used at the challenge policy), the simulator picks f̃u
R← Zp and

169

outputs

F (u) = gf̃ug
∑
x∈X

∑
j∈[n′] bxa

q+1−jA′x,j = f̃u
∏
x∈X

∏
j∈[n′]

(
gbxa

q+1−j
)A′x,j

Otherwise, i.e. u ∈ δ[`], letX ′′ = X\{x|δ(x) = u}. Therefore, X ′′ is the

set of rows that belong to authority θ but do not have u as the corresponding

attribute. Then the simulator picks f̃u
R← Zp and outputs

F (u) = gf̃ug
∑
x∈X′′

∑
j∈[n′] bxa

q+1−jA′x,j = gf̃u
∏
x∈X′′

∏
j∈[n′]

(
gbxa

q+1−j
)A′x,j

Secret Keys: Consider the query (GIDi, Si) where Si ⊆ UΘ × U .

First, consider the case where there is no row x such that (ρ(x), δ(x)) ∈

Si. Then according to the above H(GIDi) = gh̃ig
∑n
k=2 a

k−1
. We have to con-

sider two cases for each element (θ, u) of Si:

• θ /∈ ρ[`]: Here the simulator knows αθ and yθ. Therefore it picks t
R← Zp

and outputs

Kθ,u,GIDi = gαθH(GIDi)yθF (u)t and K ′θ,u,GIDi = gt

• θ ∈ ρ[`]: Here we know that there is no row (θ, u) in the policy. Therefore

we have that u /∈ δ[`] (remember that each attribute belongs to exactly

one authority); hence F (u) = gf̃ug
∑
x∈X

∑
j∈[n′] bxa

q+1−jA′x,j . In this case

170

the simulator sets implicitly t = −
∑

k∈[n′] a
k and computes the key

Kθ,u,GIDi = gαθH(GIDi)yθF (u)t

= g
∑
x∈X bxaq+1A′x,1g

∑
x∈X

∑n′
j=2

∑n′
k=2 bxa

q+1+k−jA′x,j

· g−
∑
x∈X

∑
j∈[n′]

∑
k∈[n′] bxa

q+1+k−jA′x,j

· gα̃θH(GIDi)ỹθ (gyθ)h̃i
(
gt
)f̃u

= g−
∑
x∈X

∑n′
j=2 bxa

q+2−jA′x,jg−
∑
x∈X

∑n′
k=2 bxa

q+kAx,1

· gα̃θH(GIDi)ỹθ (gyθ)h̃i
(
gt
)f̃u

= gα̃θH(GIDi)ỹθ (gyθ)h̃i
(
gt
)f̃u

·
∏
x∈X

n′∏
j=2

(
gbxa

q+2−j
)−A′x,j ·∏

x∈X

n′∏
k=2

(
gbxa

q+k
)−A′x,1

K ′θ,u,GIDi = gt =
∏
k∈[n′]

(gak)−1

Finally it re-randomizes this key on t using the public parameters and

outputs the re-randomized key.

If there is a row x such that (ρ(x), δ(x)) ∈ Si, then H(GIDi) =

gh̃ig
∑n
k=2 a

k−1di,k . We consider the following cases for each element (θ, u) of

Si:

• θ /∈ ρ[`]: Here the simulator knows αθ and yθ. Therefore it picks t
R← Zp

and outputs

Kθ,u,GIDi = gαθH(GIDi)yθF (u)t and K ′θ,u,GIDi = gt

171

• θ ∈ ρ[`] and u /∈ δ[`]: As before F (u) = gf̃ug
∑
x∈X

∑
j∈[n′] bxa

q+1−jA′x,j . The

simulator sets implicitly t = −
∑

k∈[n′] a
kdi,k and outputs

Kθ,u,GIDi = gαθH(GIDi)yθF (u)t

= g
∑
x∈X bxaq+1A′x,1g

∑
x∈X

∑n′
j=2

∑n′
k=2 bxa

q+1+k−jA′x,jdi,k

· g−
∑
x∈X

∑
j∈[n′]

∑
k∈[n′] bxa

q+1+k−jA′x,jdi,k

· gα̃θH(GIDi)ỹθ (gyθ)h̃i
(
gt
)f̃u

= g−
∑
x∈X

∑n′
j=2 bxa

q+2−jA′x,jdi,1g−
∑
x∈X

∑n′
k=2 bxa

q+kA′x,1di,k

· gα̃θH(GIDi)ỹθ (gyθ)h̃i
(
gt
)f̃u

=
∏
x∈X

n′∏
j=2

(
gbxa

q+2−j
)−A′x,j ·∏

x∈X

n′∏
k=2

(
gbxa

q+k
)−A′x,1di,k

· gα̃θH(GIDi)ỹθ (gyθ)h̃i
(
gt
)f̃u

K ′θ,u,GIDi = gt =
∏
k∈[n′]

(gak)−di,k

As before it re-randomizes this key on t using the public parameters and

outputs the re-randomized key.

• θ ∈ ρ[`] and u ∈ δ[`]: In this case we have

F (u) = gf̃ug
∑
x∈X′′

∑
j∈[n′] bxa

q+1−jA′x,j (with X ′′)

172

The simulator sets implicitly t = −
∑

k∈[n′] a
kdi,k and outputs

Kθ,u,GIDi = gαθH(GIDi)yθF (u)t

= g
∑
x∈X bxaq+1A′x,1g

∑
x∈X

∑n′
j=2

∑n′
k=2 bxa

q+1+k−jA′x,jdi,k

· g−
∑
x∈X′′

∑
j∈[n′]

∑
k∈[n′] bxa

q+1+k−jA′x,jdi,k

· gα̃θH(GIDi)ỹθ (gyθ)h̃i
(
gt
)f̃u

= g
∑
x∈X\X′′ bxa

q+1〈 ~A′x,~di〉g
∑
x∈X\X′′

∑n′,n′
j=2,k=2
j 6=k

bxaq+1+k−jA′x,jdi,k

· g−
∑
x∈X

∑n′
j=2 bxa

q+2−jA′x,jdi,1g−
∑
x∈X

∑n′
k=2 bxa

q+kA′x,1di,k

· gα̃θH(GIDi)ỹθ (gyθ)h̃i
(
gt
)f̃u

=
∏

x∈X\X′′

n′,n′∏
j=2,k=2

j 6=k

(
gbxa

q+1+k−j
)A′x,jdi,k ·∏

x∈X

n′∏
j=2

(
gbxa

q+2−j
)−A′x,j

·
∏
x∈X

n′∏
k=2

(
gbxa

q+k
)−A′x,1di,k

· gα̃θH(GIDi)ỹθ (gyθ)h̃i
(
gt
)f̃u

K ′θ,u,GIDi = gt =
∏
k∈[n′]

(gak)−di,k

As before it re-randomizes this key on t using the public parameters

and outputs the re-randomized key. Notice that X \ X ′′ contains rows

that map to (θ, u) in the challenge policy. Therefore, according to our

discussion in the creation of the secret keys
〈
~Ax, ~di

〉
= 0.

Challenge Ciphertext: The first part of the ciphertext is calculated

as C0 = Mb ·T , where b
R← {0, 1} is a random coin and T is the challenge term.

Thus the simulator B implicitly set z = saq+1.

173

The simulator also sets implicitly

~v =
(
saq+1, 0, . . . , 0

)
∈ Znp and ~w =

 n′︷ ︸︸ ︷
0, saq, . . . , saq−n

′+2, 0, . . . , 0

 ∈ Znp

Therefore for a row x∗ ∈ [`] that belongs to a corrupted authority we

have that λx∗ = 0 and ωx∗ = 0, due to the fact that these rows have all “0”s

in the first n′ columns. Thus for these rows the simulator picks tx∗
R← Zp and

using the public key {e(g, g)αθ , gyθ} of the corrupted authority it computes:

C1,x∗ = e(g, g)λx∗e(g, g)αρ(x∗)tx∗ = (e(g, g)αρ(x∗))tx∗

C2,x∗ = g−tx∗

C3,x∗ = gyρ(x∗)tx∗gωx∗ = (gyρ(x∗))tx∗

C4,x∗ = F (δ(x∗))tx∗

On the other hand for a row x∗ that does not belong to corrupted

authorities, we have that λx∗ = saq+1 ·A′x∗,1 and ωx∗ =
∑n′

j=2 sa
q+2−jA′x∗,j. For

each one of these rows B sets implicitly tx∗ = −s/bx∗ and computes:

C1,x∗ = e(g, g)λx∗e(g, g)αρ(x∗)tx∗ = e(g, g)sa
q+1A′

x∗,1e(g, g)−
∑
x∈X sbxaq+1A′

x∗,1/bx∗

=
∏

x∈X\{x∗}

e(g, gsbxa
q+1/bx∗)−A

′
x∗,1

C2,x∗ = g−tx∗ = gs/bx∗

174

C3,x∗ = gyρ(x∗)tx∗gωx∗ = g−
∑
x∈X

∑n′
j=2 sbxa

q+2−jA′
x∗,j/bx∗g

∑n′
j=2 sa

q+2−jA′
x∗,j

=
∏

x∈X\{x∗}

n′∏
j=2

(
gsbxa

q+2−j/bx∗
)−A′

x∗,j

C4,x∗ = F (δ(x∗))tx∗ = g−
∑
x∈X′′

∑
j∈[n′] sbxa

q+1−jA′
x∗,j/bx∗

=
∏
x∈X′′

∏
j∈[n′]

(
gsbxa

q+1−j/bx∗
)−A′

x∗,j

Notice that x∗ /∈ X ′′. Therefore the simulator can compute C4,x∗ .

Finally the simulator re-randomizes the ciphertext on the vectors ~v and ~w and

on the exponents t using the public parameters.

Guess: If the attacker Adv correctly guessed the bit b, then the

simulator B outputs that the challenge term was e(g, g)sa
q+1

. That is because

in this case it simulated the static security game perfectly. If the attacker

did not guess the bit correctly, the simulator answer that T was a random

group element. In this case the simulator produced an encryption of a random

message. Therefore, if Adv is successful with more than negligible advantage,

so is B. �

175

CHAPTER 7

Implementations and Benchmarks

7.1 Charm Framework

We implemented our scheme in Charm [2]; a framework developed to

facilitate the rapid prototyping of cryptographic schemes and protocols. It

is based on the Python language which allows the programmer to write code

similar to the theoretical descriptions. However, the routines that implement

the dominant group operations use the PBC library [76] (written natively in C)

and the time overhead imposed by the use of Python is usually less than 1%.

Charm also provides routines for applying and using LSSS schemes needed for

Attribute-Based systems. For more information on Charm we refer the reader

to [2, 32].

We tested several ABE constructions on all elliptic curve bilinear groups

provided by Charm, i.e. three super-singular symmetric EC groups and two

“MNT” [79] asymmetric EC groups. In Table 7.1 we present the approximate

176

security level each group provides with respect to the discrete log problem.

Although this does not necessarily translates to the security level of our as-

sumption (or the various assumptions of the other ABE schemes), it provides

an intuitive comparison between the security levels of the different instanti-

ations. For more information on the security of discrete log and of q-type

assumptions we refer the reader to [48, 67, 83, 91].

Curve Security Level (Bits)

SS512 80
SS1024 112
MNT159 70
MNT201 90
MNT224 100

Table 7.1: Approximate security levels in bits of the ECC groups supported
by the Charm framework. “SS” are super singular curves (symmetric bilinear
groups), while “MNT” are the Miyaji, Nakabayashi, Takano curves (asymmet-
ric bilinear groups). The number after the type of the curve denotes the size
of the base field in bits.

7.2 Implementation Details

All Charm routines use formally asymmetric groups (although the un-

derlining groups might be symmetric) and therefore we translated our schemes

to the asymmetric setting. Namely, we have three groups G1,G2 and GT and

the pairing e is a function from G1 × G2 to GT . We note here that we tried

to implement our algorithms so that more operations are executed in the G1

group than in the G2 and that encryption consists mainly of operations in G1,

compared to key generation. The reason is that the time taken to execute

177

them in the G1 group is considerably smaller than G2 in specific asymmetric

groups such as the “MNT” groups.

The source code of our implementations can be found in [106]. All

our benchmarks were executed on a dual core Intel R© Xeon R© CPU W3503

@2.40GHz with 2.0GB RAM running Ubuntu R10.04 and Python3.2.3.

7.3 Benchmarks KP-ABE and CP-ABE

We compare our single-authority large universe constructions of Chap.

6 with the three known unbounded constructions on prime order groups. In

Table 7.2 we present time benchmarks in different elliptic curve groups for

some sample policies (≈ size 4 attributes). Asymptotic results on the group

exponentiations are shown in Sec. 7.4.

Regarding the comparison between our schemes and prior works, we

notice the big gap between the timings of our constructions and prior ones.

This is due to the fact that dual vector spaces of high dimension (≈ 10 - 14)

are utilized, which increase the number of group operations by big factors. We

remind the reader that the OT schemes are fully secure, while the RW and

LW selectively secure.

Regarding the practicality, in general, of both our schemes we notice

that the KeyGen, Encrypt, and Decrypt times of our algorithms are relatively

small. They are all under 100ms, with the exception of the super singular 1024-

bit curve. Even for this curve the times for each algorithm are under the 700

178

msec mark. Although one would expect that as the policies and the attributes

sets grow bigger these times will increase, the additional overhead will grow

only linearly. Thus we believe that the two constructions constitute the most

practical implementations of large universe ABE, secure in the standard model.

7.4 Group Operations (Asymptotic) for KP-ABE and
CP-ABE

In Table 7.3, we demonstrate the asymptotic growth of the algorithms

of the schemes implemented. For the KP-ABE setting the number of group

operations during the key generation, encryption, and decryption calls depends

linearly on the number of rows in the policy, on the size of the attribute set

and the number of rows that are used during decryption, respectively. In the

CP-ABE setting the key generation time grows linearly with the size of the

attribute set and the encryption time with the number of rows in the policy.

Some constant factors might not correspond exactly to the factors that can be

derived from schemes in Sec. 6.2 and App. 6.1, because certain optimizations

have been applied so that common parts are only computed once (see the

source code in [106] for more details).

7.5 Benchmarks MA-CP-ABE

Regarding the comparisons of our MA-CP-ABE scheme to existing

schemes, there are three other schemes that provided expressive policies in

the multi-authority setting: the CP-ABE scheme of Lewko-Waters [73], the

179

Curve Type Scheme Setup KeyGen Encrypt Decrypt

“SS512”
KP-ABE

RW [6.1] 19.1 49.1 30.7 14.7
LW [70] 447.2 642.3 483.4 44.7
OT [87] 673.7 924.4 933.5 65.6

CP-ABE
RW [6.2] 25.0 32.9 52.0 16.6
OT [87] 678.0 922.9 938.5 66.0

“SS1024”
KP-ABE

RW [6.1] 71.5 626.3 396.8 325.3
LW [70] 5553.3 9283.8 6978.3 1098.8
OT [87] 7904.3 13389.3 13582.0 1735.7

CP-ABE
RW [6.2] 110.8 431.0 669.3 374.4
OT [87] 7898.9 13393.2 13598.7 1740.4

“MNT159”
KP-ABE

RW [6.1] 21.1 48.1 44.3 36.4
LW [70] 692.2 1666.3 168.9 125.2
OT [87] 930.7 2435.1 320.6 178.4

CP-ABE
RW [6.2] 23.5 43.8 53.5 41.5
OT [87] 929.9 2396.2 326.7 183.5

“MNT201”
KP-ABE

RW [6.1] 28.4 59.2 60.2 49.7
LW [70] 929.8 2301.1 237.8 173.6
OT [87] 1237.1 3338.3 453.3 251.5

CP-ABE
RW [6.2] 31.3 58.7 71.9 57.4
OT [87] 1235.1 3328.7 463.3 251.8

“MNT224”
KP-ABE

RW [6.1] 34.2 73.4 74.2 60.9
LW [70] 1150.9 2896.0 302.1 215.6
OT [87] 1514.9 4156.3 572.4 309.8

CP-ABE
RW [6.2] 37.9 73.2 88.2 74.4
OT [87] 1511.7 4140.0 584.5 310.7

Table 7.2: Typical running times in milliseconds of each scheme. KeyGen
and Encrypt are called with attribute sets and policies of size 4, while Decrypt
with common attribute sets of size 2. “MNT” are the Miyaji, Nakabayashi,
Takano curves (asymmetric pairing groups), while “SS” are super singular
curves (symmetric pairing groups). The number after the type of the curve
denotes the size of the base field in bits.

180

Type Scheme Algorithm G1 G2 GT Pairings

KP-ABE

RW [6.1]

Setup 0 0 1 1
KeyGen 4k k 0 0
Encrypt 2m+ 1 m+ 1 1 0
Decrypt 0 0 n 3n

LW [70]

Setup 60 80 2 1
KeyGen 0 60k 0 0
Encrypt 40m+ 20 0 2 0
Decrypt 0 0 10n 10n

OT [87]

Setup 100 99 1 1
KeyGen 0 84k + 10 0 0
Encrypt 84m+ 15 0 1 0
Decrypt 0 0 n 14n+ 5

CP-ABE

RW [6.2]

Setup 1 0 1 1
KeyGen 2m+ 2 m+ 1 0 0
Encrypt 4k k + 1 1 0
Decrypt 0 0 n 3n+ 1

OT [87]

Setup 100 99 1 1
KeyGen 0 84m+ 10 0 0
Encrypt 84k + 15 0 1 0
Decrypt 0 0 n 14n+ 5

Table 7.3: Asymptotic growth of the exponentiations in the three groups and
the pairings. These are the dominant operations in each call. Notice the large
constant factors in the schemes utilizing the dual vector spaces. These are due
to the large dimensions of vectors. The k,m, n parameters denote the number
of rows of the policy, the size of the attribute set, and the rows utilized during
decryption, respectively.

181

prime order version of it [69], and the multi-authority signature scheme of

Okamoto - Takashima [89]. However, we decided to defer implementation and

benchmarking of them for several reasons. The first scheme utilizes composite

order groups, which are several orders of magnitude slower than the prime

order groups that provide the same security level. We expect our scheme to

be significantly faster. More information on the comparison between prime

and composite groups can be found in Sec. 3.3.4. In addition, Charm does not

support composite order groups. The other two schemes utilize dual pairing

vector spaces of high dimension and all their components (public parameters,

secret keys) consist of a large number of group elements which degrades their

efficiency. Secondly an one-use restriction per policy is imposed on each at-

tribute on the first two systems. So even these schemes provide less flexibility

than our construction. Finally, it is questionable the validity of the comparison

between a prime order group and a composite order group, when the underly-

ing elliptic curve is different and/or different optimizations have been applied

to them.

Instead of this, we validate the claim that our system provides sim-

ilar efficiency to existing single-authority ABE constructions, by providing

implementation results of two single-authority ABE schemes. These are the

Bethencourt-Sahai-Waters CP-ABE scheme [11] and the recent Waters CP-

ABE [112]. Both of them were implemented by the Charm authors as typical

examples. The former scheme is secure in the generic group model, while the

implementation of the latter uses the random oracle version of it.

182

In this section we present the timing results of our multi-authority

CP-ABE scheme. Since there are no other multi-authority large universe

CP-ABE schemes on prime order groups, we compare it versus two know and

established single-authority CP-ABE constructions and claim that our scheme

achieves similar timings. Timing results in milliseconds are shown in Table

7.4. We see that our scheme achieves similar operation times to the two estab-

lished single-authority schemes. In general, we attempted to keep execution

times for encryption and decryption relatively low, while the times for setup

and key generation can be significantly higher, since they are called only once.

183

O
u
r

C
P

-A
B

E
[S

ec
.

6.
3]

(M
u
lt

i-
au

th
or

it
y,

ra
n
d
om

or
ac

le
m

o
d
el

,
st

at
ic

al
ly

se
cu

re
)

C
u
rv

e
G
S

A
S

K
G

(4
)

K
G

(8
)

K
G

(1
2)

E
C

(4
)

E
C

(8
)

E
C

(1
2)

D
E

(4
)

D
E

(8
)

D
E

(1
2)

S
S
51

2
8.

4
4.

1
91

.5
18

2.
9

27
4.

6
75

.0
15

0.
4

22
6.

4
34

.5
59

.2
82

.3
S
S
10

24
58

.0
43

.8
63

1.
4

12
63

.5
18

94
.5

66
6.

9
13

31
.2

19
97

.2
64

1.
4

12
75

.4
19

07
.4

M
N

T
15

9
14

.4
3.

7
29

5.
9

50
2.

7
79

9.
7

15
5.

9
29

9.
4

45
0.

1
99

.3
15

9.
8

23
7.

5
M

N
T

20
1

19
.5

4.
6

37
0.

5
78

7.
0

12
05

.8
19

1.
6

40
1.

2
59

2.
1

13
3.

8
23

7.
9

32
1.

5
M

N
T

22
4

24
.1

5.
5

48
9.

5
83

8.
4

13
35

.2
24

4.
1

47
3.

0
69

5.
9

15
7.

0
27

3.
2

39
0.

3

B
S
W

C
P

-A
B

E
[1

1]
(S

in
gl

e-
au

th
or

it
y,

ge
n
er

ic
gr

ou
p

m
o
d
el

,
ad

ap
ti

ve
ly

se
cu

re
)

C
u
rv

e
G
S

A
S

K
G

(4
)

K
G

(8
)

K
G

(1
2)

E
C

(4
)

E
C

(8
)

E
C

(1
2)

D
E

(4
)

D
E

(8
)

D
E

(1
2)

S
S
51

2
20

.1
N

/A
52

.9
10

0.
1

14
6.

9
51

.0
98

.5
14

7.
6

22
.5

40
.3

55
.3

S
S
10

24
21

3.
3

N
/A

39
4.

0
71

0.
3

10
26

.5
36

0.
1

68
1.

6
99

7.
1

48
2.

2
90

9.
0

13
33

.9
M

N
T

15
9

31
.2

N
/A

15
2.

8
26

5.
2

39
9.

4
10

7.
5

26
8.

2
37

6.
9

56
.4

10
4.

7
14

9.
1

M
N

T
20

1
42

.2
N

/A
22

1.
5

33
5.

1
55

7.
8

16
9.

8
33

1.
7

56
4.

5
76

.3
14

2.
5

20
5.

5
M

N
T

22
4

52
.3

N
/A

19
2.

8
44

7.
5

56
6.

1
20

9.
1

32
9.

3
59

5.
2

94
.7

17
5.

0
25

3.
6

W
at

er
s

C
P

-A
B

E
[1

12
]

(S
in

gl
e-

au
th

or
it

y,
ra

n
d
om

or
ac

le
m

o
d
el

,
ad

ap
ti

ve
ly

se
cu

re
)

C
u
rv

e
G
S

A
S

K
G

(4
)

K
G

(8
)

K
G

(1
2)

E
C

(4
)

E
C

(8
)

E
C

(1
2)

D
E

(4
)

D
E

(8
)

D
E

(1
2)

S
S
51

2
20

.4
N

/A
39

.6
73

.9
10

8.
0

64
.2

12
4.

8
18

6.
4

32
.5

60
.1

85
.3

S
S
10

24
21

6.
3

N
/A

23
7.

7
39

7.
5

55
8.

6
51

6.
4

99
2.

9
14

64
.4

62
7.

0
12

00
.5

17
70

.1
M

N
T

15
9

32
.7

N
/A

18
.3

21
.8

25
.7

43
.4

84
.5

12
5.

2
56

.3
10

4.
5

14
8.

8
M

N
T

20
1

44
.6

N
/A

25
.4

31
.7

37
.2

58
.8

11
8.

3
17

0.
7

77
.0

14
3.

4
20

6.
9

M
N

T
22

4
55

.1
N

/A
31

.4
38

.4
45

.2
71

.3
13

7.
3

20
5.

7
95

.2
17

7.
9

25
8.

4

T
ab

le
7.

4:
A

ve
ra

ge
ru

n
n
in

g
ti

m
es

in
m

il
li
se

co
n
d
s

of
ou

r
sc

h
em

e
an

d
tw

o
si

n
gl

e
au

th
or

it
y

sc
h
em

es
.

T
h
e

al
go

ri
th

m
s

ar
e

d
en

ot
ed

as
G
S
:

G
lo

b
al

se
tu

p
,
A
S

:
A

u
th

or
it

y
se

tu
p
,
K
G

:
K

ey
ge

n
er

at
io

n
fo

r
a

u
se

r,
E
C

:
E

n
cr

y
p
t,

D
E

:
D

ec
ry

p
t.

T
h
e

n
u
m

b
er

s
in

p
ar

en
th

es
es

re
fe

r
to

th
e

n
u
m

b
er

of
at

tr
ib

u
te

s
in

ke
y

ge
n
er

at
io

n
,

th
e

n
u
m

b
er

of
ro

w
s

of
th

e
p

ol
ic

y
in

en
cr

y
p
ti

on
,

an
d

th
e

n
u
m

b
er

of
ro

w
s

u
ti

li
ze

d
d
u
ri

n
g

d
ec

ry
p
ti

on
.

W
e

ca
n

se
e

th
e

li
n
ea

r
d
ep

en
d
en

ce
b

et
w

ee
n

th
es

e
n
u
m

b
er

s
an

d
th

e
co

rr
es

p
on

d
in

g
ti

m
es

.

184

CHAPTER 8

Other Work and Future Directions

8.1 Other Work

Leakage-Resilient IBE In a joint work with Chow, Dodis, and Wa-

ters [36] we provide new constructions of leakage-resilient IBE in the standard

model. We apply a hash proof technique in the existing IBE schemes of Boneh-

Boyen, Waters, and Lewko-Waters. As a result, we achieve leakage-resilience

under the respective static assumptions of the original systems in the standard

model. The first two systems are secure under the simple Decisional Bilinear

Diffie-Hellman assumption (DBDH). The first system is selectively secure and

serves as a stepping stone to construct the fully secure system. This second

system is the first leakage-resilient fully secure system under DBDH in the

Standard model. Finally the third system achieves full security with shorter

public parameters but is based on three non-standard static assumptions (sim-

ilar to the composite order group assumptions of Sec. 3.2.2). The efficiency of

185

our transformed systems is almost the same as the original ones.

Our main technique is different than the technique presented in Chap.

5. The original systems used random secret keys with only one degree of

freedom, which was explorable to the secret key holder. This means that

the owner of the secret key could re-randomize his key arbitrarily without

knowing the secret parameters of the IBE system (the master secret key). In

this sense the information each key holds is deterministic. The new technique

we applied was to add another randomness to the secret keys, called “tag”,

coupled with some master secret key terms. As a result, the secret-key holder

can not anymore re-randomize his key (in this degree of freedom). The added

randomness allows the simulators of our security proofs to provide the attacker

leaked information from a properly distributed secret key with a tag of our

choice.

Obviously the ability of the simulator to create these secret keys allows

him to decrypt the challenge ciphertext. One would ask then why is the at-

tacker’s response useful to the simulator. The answer is that we use a standard

primitive in leakage-resilient constructions [5, 80] to “mask” the relationship

between the leakage of the secret key and the ciphertext. This primitive, called

extractor [82], makes it hard for any attacker to break the system given only a

bounded amount of leakage from the secret key when the simulator “injects”

the tag of the challenge identity to specific parts of the ciphertext.

Property-Preserving Encryption Processing on encrypted data is

a subject of rich investigation. Several new and exotic encryption schemes,

186

supporting a diverse set of features, have been developed for this purpose. In

a joint work with Omkant Pandey [92] we consider encryption schemes that

are suitable for applications such as data clustering on encrypted data. In

such applications, the processing algorithm needs to learn certain properties

about the encrypted data to make decisions. Often these decisions depend

upon multiple data items, which might have been encrypted individually and

independently. Current encryption schemes do not capture this setting where

computation must be done on multiple ciphertexts to make a decision.

In this work, we seek encryption schemes which allow public computa-

tion of a pre-specified property P about the encrypted messages. That is, such

schemes have an associated property P of fixed arity k, and a publicly com-

putable algorithm Test, such that Test(ct1, ct2, . . . , ctk) = P (m1,m2, . . . ,mk),

where cti is an encryption of mi for i = 1, 2, . . ., k. Further, this requirement

holds even if the ciphertexts ct1, ct2, . . . , ctk were generated individually and

independently. We call such schemes property preserving encryption schemes.

Property preserving encryption (PPEnc) makes most sense in the symmetric

setting due to the requirement that Test is publicly computable.

In this work, we present a thorough investigation of property preserving

symmetric encryption. We start by formalizing several meaningful notions of

security for PPEnc. Somewhat surprisingly, we show that there exists a hier-

archy of security notions for PPEnc, indexed by integers η ∈ N, which does

not collapse. We also present a symmetric PPEnc scheme for encrypting vec-

tors in ZN of polynomial length. This construction supports the orthogonality

187

property: for every two vectors (~x, ~y) it is possible to publicly learn whether

〈~x, ~y〉 = 0 (mod p). Our scheme is based on bilinear groups of composite

order.

8.2 Future Directions

Leakage - Resilient Functional Encryption The CP-ABE con-

struction that we presented in Chap. 5 supports any monotone Boolean for-

mula as the policy of the ciphertext. Although these policies are sufficiently

expressive for many practical scenarios, a very interesting direction is to inves-

tigate further the limits on the expressiveness of ABE systems, which in this

case are referred to as Functional Encryption Schemes [24]. While the ultimate

goal would be to construct a scheme where the policies are arbitrary Turing

machines, the state-of-the-art systems provide functionality for regular lan-

guages [109] and circuits [50, 51, 55]. So far no leakage-resilient constructions

have been presented for these schemes and it would be intriguing to investigate

whether existing techniques for leakage resilience apply on these schemes.

Practical Implementations Another promising direction is the de-

signing and testing of more practical ABE systems similar to the ones of Chap.

6. Adding more advanced features combined with fast operations might open

the way to widespread deployment of ABE systems and / or functional encryp-

tion in general. As the work of Lewko - Waters [75] suggests, novel techniques

and / or groups are needed to achieve stronger security guarantees such as full

security,

188

Appendices

189

APPENDIX A

Generic Security of the Assumptions

In this section we consider the security of our assumptions in the generic group

model introduced by Shoup [104]. In this model the attacker does not receive

the actual representations of group elements in G or GT , but handles picked

from a sufficiently large handle space. Whenever a new group element has

to be given to the attacker, he receives a uniformly random handle from the

handle space; not picked before. From now on this handle is “fixed” to this

specific group element. The attacker is allowed to query for operations on the

handles he has already received. Then the challenger executes the operation

on the underlying group elements and returns either a freshly picked handle,

if the result is new, or an existing handle. The only operations available on

group elements to the attacker are multiplications in G or GT , pairings in G

and the equality checking of two group elements in G or GT by checking the

equality of handles. The main goal of the generic group model proofs is to

provide an indication of the absence of “security holes” which are independent

190

from the specific group representations.

A.1 Two General Theorems

The following theorem will provide an easier way to argue about the

security of our assumptions in the generic group model.

Definition A.1 (GT -monomial assumption). A GT -monomial assumption is

parameterized by a security parameter λ ∈ N. It refers to a prime order

bilinear group D = (p,G,GT , e) with p = Θ(2λ), a matrix A ∈ ZL×K and two

target vectors Ã0, Ã1 ∈ Z1×K .

We require that Ã0 6= Ã1 and that the natural numbersK,L and the the

absolute values of the integers in A, Ã0 and Ã1 are all polynomially bounded

in λ.

The assumption is defined via a game between a challenger and an

adversary. Initially, the challenger picks K independent and uniformly random

variables X1, X2, . . . , XK
R← Zp. Then it constructs the following monomials

in these variables:

Yi =
∏
j∈[K]

X
Ai,j
j for all i ∈ [L] , Z0 =

∏
j∈[K]

X
Ã0
j

j and Z1 =
∏
j∈[K]

X
Ã1
j

j

Finally, the challenger picks g
R← G and b

R← {0, 1}. He sends to the

adversary the description of the group D = (p,G,GT , e), the matrix A, the

vectors Ã0, Ã1, the terms
{
gYi
}
i∈[L]

, and the challenge term e(g, g)Zb . The

191

assumption claims that no PPT adversary has a non negligible advantage in

guessing the bit b.

We will prove the following theorem that refers to the generic security

of a GT -monomial assumption:

Theorem A.2. The above assumption is secure in the generic group model if

and only if for all i, j ∈ [L] it is true that Ã0 6= Ai + Aj and Ã1 6= Ai + Aj,

where Ai is the i-th row of A.

For the proof of the theorem A.2 we will use the following lemma:

Lemma A.3. Consider any linear combination of the form

T (X1, X2, . . . , XK) = c̃0Z0 + c̃1Z1 +
∑

(i,j)∈[L,L]

ci,jYi · Yj

with c̃0, c̃1, ci,j constants in Zp and T is not identically zero as a rational func-

tion in variables X1, X2, . . ., XK.

Then the probability that T (X1, X2, . . . , XK) = 0 (mod p) is negligible

in λ.

Proof. of lemma A.3 The proof is an immediate consequence of the Schwartz-

Zippel lemma and the fact that the total degree of each monomial is polyno-

mially bounded in λ. More specifically, consider the polynomial

T ′(X1, X2, . . . , XK) = T (X1, X2, . . . , XK) · C(X1, X2, . . . , XK)

where C(X1, X2, . . . , XK) =
∏
Xdi
i with di being the absolute value of the

minimum negative exponent of Xi in the monomials YiYj for any i, j and the

192

Z0, Z1, or 0 if Xi has only positive exponents. As a result T ′ is a polynomial

in variables X1, X2, . . ., XK .

Since the absolute values of the elements ofA, Ã0, and Ã1 are all polyno-

mially bounded in λ, the total degree of the polynomial T ′ is also polynomially-

bounded in λ. Since T , and therefore T ′, is not identically zero we can apply

the Schwartz-Zippel lemma: the probability that T ′ becomes zero is at most

O(λc)/p = O(λc)/Θ(2λ) = negl(λ). This is equal to the probability that T is

zero or undefined (when some Xi with di > 0 is instantiated to zero). There-

fore, the probability that T is zero is at most negligible in λ. �

Proof. of theorem A.2 We will prove the forward direction first. Namely,

suppose that there exist i, j and b′ ∈ {0, 1} such that Ãb
′

= Ai + Aj. W.l.o.g.

we assume b′ = 0. Since according to the definition of the assumption Ã0 6= Ã1,

we conclude that Ã1 6= Ai + Aj.

The adversary can in polynomial time find these i, j, because L is poly-

nomial, and request the handle of the term e(gYi , gYj). If this handle is equal

to the handle of e(g, g)Zb of the challenge term, it outputs 0. Otherwise it

outputs 1.

Therefore, if b is indeed 0 the adversary is successful with certainty.

If it is the case that b = 1, the adversary makes a wrong guess only when

the handle of e(g, g)Z1 happens to be the same as the handle of e(gYi , gYj).

According to the generic group model this is equivalent to Z1 = Yi · Yj (after

193

the instantiations). Since Ã1 6= Ai +Aj we get that the expression Z1− Yi · Yj

is not identically zero. Therefore, according to lemma A.3 we conclude that

the error probability of the adversary when b = 1 is negl(λ). As a result the

advantage of the adversary is non negligible and the assumption not secure in

the generic group model.

For the backward direction we assume that there exists a PPT ad-

versary that breaks the assumption in the generic group model game. First,

we define a new security game where the random variables X1, X2, . . . , XK are

never instantiated and the handles returned to the adversary are the same only

when the rational functions of the Xi’s in the exponents of group elements are

formally equal. This game differs from the real generic group model game only

when two different linear combinations of monomials are instantiated to the

same value. Since the number of queries by the adversary is polynomial and

because of lemma A.3, the probability of this event is negligible. Therefore,

the adversary has a non negligible advantage in the modified game.

Since the only decision query he can ask is to compare the handles of

two terms, he can construct two terms T1, T2 ∈ GT such that T1 = T2 (in terms

of formal equality of the exponents) for one value of b but not for the other1.

According to the allowable operations and the terms given to adversary, T1

and T2 should be of the form e(g, g)S where S is a linear combination of the

set of monomials {Zb} ∪ {Yi · Yj}i,j∈[L].

1A decision in G can be expressed in terms of GT by pairing with the same element of G

194

W.l.o.g. suppose that T1 is equal to T2 when b = 0 and different

otherwise. Then if T1 = e(g, g)S1 and T2 = e(g, g)S2 , we get that T1 = T2 =⇒

S1 = S2 =⇒ Z0 = S∗, where S∗ is a linear combination of only the monomials

{Yi · Yj}i,j∈[L]. The coefficient of Z0 has to be non-zero because otherwise the

value of b would be information-theoretically hidden and the advantage of the

adversary would be zero in this game. Since the Z0 = S∗ is a formal equation

and Z0 is a monomial the only way this is possible is to have Z0 = Yi · Yj for

some i, j. Therefore, Ã0 = Ai + Aj. �

The following corollary refers to a GT -monomial assumption where the

second challenge term is uniformly random from GT . The proof from theorem

A.2 is trivial and is omitted.

Corollary A.1.1. If Ã1 = (0, 0, . . . , 0, 1) ∈ Z1×K and 〈Ã1, Ai〉 = 0 for all i ∈ [L],

the corresponding GT -monomial assumption is secure in the generic group

model if and only if for all i, j ∈ [L] it is true that Ã0 6= Ai + Aj.

A.2 Proofs of Security in the Generic Group Model

Using the above corollary we show that our assumptions are secure in

the generic group model in lemmata A.5 and A.4.

Lemma A.4. The “q-DPBDH1” assumption is secure in the generic group

model.

Proof. q-DPBDH1 is a GT -monomial assumption with random variables x, y,

z, b1, b2, . . ., bq instead of X1, X2, . . ., XK−1. The matrix A and the target

195

vector Ã0 for this assumption are shown in table A.1.

Type Given Terms Conditions x y z b1 b2 . . . bq

1 g 0 0 0 0 0 . . . 0

2 gx 1 0 0 0 0 . . . 0

3 gy 0 1 0 0 0 . . . 0

4 gz 0 0 1 0 0 . . . 0

5 g(xz)2
2 0 2 0 0 . . . 0

6 gbi ∀i ∈ [q] 0 0 0 [i : 1]

7 gxzbi ∀i ∈ [q] 1 0 1 [i : 1]

8 gxz/bi ∀i ∈ [q] 1 0 1 [i : (−1)]

9 gx
2zbi ∀i ∈ [q] 2 0 1 [i : 1]

10 gy/b
2
i ∀i ∈ [q] 0 1 0 [i : (−2)]

11 gy
2/b2i ∀i ∈ [q] 0 2 0 [i : (−2)]

12 gxzbi/bj ∀(i, j) ∈ [q, q] with i 6= j 1 0 1 [i : 1, j : (−1)]

13 gybi/b
2
j ∀(i, j) ∈ [q, q] with i 6= j 0 1 0 [i : 1, j : (−2)]

14 gxyzbi/bj ∀(i, j) ∈ [q, q] with i 6= j 1 1 1 [i : 1, j : (−1)]

15 g(xz)2bi/bj ∀(i, j) ∈ [q, q] with i 6= j 2 0 2 [i : 1, j : (−1)]

Ã0 e(g, g)xyz 1 1 1 0 0 . . . 0

Table A.1: Compact form of matrix A and target vector Ã0 for the q-DPBDH1
assumption.

In order to prove the lemma we have to show that by adding any two

rows of matrix A we can not get the row vector Ã0 = (1, 1, 1, 0, 0, . . . , 0).

We will mainly focus on the first three columns of matrix A, i.e. the x, y, z

columns. First, we observe that the rows of types 5, 9, 11, and 15, can not be

196

used since they have at least one 2 in the first three columns and all other rows

are positive in these columns. The rows 2 and 4 have “100” and “001” in the

first three columns, respectively. Since there are no rows with “011” or “110”,

they can not be used to give the required “111”. Row 1 or a row of type 6 can

only be combined to a row of type 14, and vice versa, because the former have

“000” and the later “111”. But since a row of type 14 has [i : 1, j : (−1)] in

the bi columns, it can not be used to give all zeros in them. Finally, rows of

type 7, 8, or 12, that have “101” in the first three columns, might be possibly

combined to row 3 or rows of type 10, or 13, and vice versa. However, this

still won’t give the target vector, because none of the partial vectors [i : 1],

[i : (−1)], and [i : 1, j : (−1)] can be added to any of the vectors (0, 0, . . . , 0),

[i : (−2)], and [i : 1, j : (−2)], and give the all zero vector in the bi columns.

Therefore, according to corollary A.1.1 the q-DPBDH1 assumption is

secure in the generic group model. �

Lemma A.5. The “q-DPBDH2” assumption is secure in the generic group

model.

Proof. First, notice that this is indeed a GT -monomial assumption with ran-

dom variables a, s, b1, b2, . . ., bq instead of X1, X2, . . ., XK−1. XK is the

uniformly random exponent of the second challenge term; not present in any

of the remaining terms. Thus corollary A.1.1 applies.

In table A.2 we denote by [i : x] and [i : x, i′ : y] the row vectors in

Z1×q with all components equal to 0, except the i-th component for the first

197

vector and the i, i′-th components for the second. The non zero elements are x

for the first vector and x, y for the i, i′-th positions, respectively, of the second

vector. The table shows a compact form of the matrix A where rows of similar

type are shown in one line.

Type Given Terms Conditions a s b1 b2 . . . bq

1 g 0 0 0 0 . . . 0

2 gs 0 1 0 0 . . . 0

3 ga
i ∀i ∈ [q] i 0 0 0 . . . 0

4 gbj ∀j ∈ [q] 0 0 [j : 1]

5 gsbj ∀j ∈ [q] 0 1 [j : 1]

6 ga
ibj ∀(i, j) ∈ [q, q] i 0 [j : 1]

7 ga
i/b2j ∀(i, j) ∈ [q, q] i 0 [j : (−2)]

8 ga
i/bj

∀(i, j) ∈ [2q, q]

with i 6= q + 1
i 0 [j : (−1)]

9 g
aibj/b

2
j′

∀(i, j, j′) ∈ [2q, q, q]

with j 6= j′
i 0 [j : 1, j′ : (−2)]

10 gsa
ibj/bj′

∀(i, j, j′) ∈ [q, q, q]

with j 6= j′
i 1 [j : 1, j′ : (−1)]

11 g
saibj/b

2
j′

∀(i, j, j′) ∈ [q, q, q]

with j 6= j′
i 1 [j : 1, j′ : (−2)]

Ã0 e(g, g)sa
q+1

q + 1 1 0 0 . . . 0

Table A.2: Compact form of matrix A and target vector Ã0 for the q-DPBDH2
assumption.

In order to prove the lemma we have to show that by adding any two

198

rows of matrix A we can not get the row vector Ã0 = (q+ 1, 1, 0, 0, . . . , 0). By

inspecting table A.2 we can easily see that we have to check only the rows of

types 2, 5, 10, and 11, which have 1 in the s column.

The only rows that can be added to row 2 and give all zero’s in the bi

columns are row 1 or rows of type 3. But in both of them we can not get the

q + 1 component in the a column. Rows of type 5 can be added only to rows

of type 8 and give only zeros in the bi columns. But the term with i = q+ 1 is

excluded from rows of type 8; therefore the target vector can not be obtained.

Finally, rows of type 10 or 11 can not be added to one of the rows 1, 3, 4, 6,

7, 8, and 9 without having at least one non zero element in the bi columns.

That is because none of these rows have vectors of the form [j : (−1), j′ : 1] or

[j : (−1), j′ : 2], which are needed to cancel the bi components.

Therefore, according to corollary A.1.1 the q-DPBDH2 assumption is

secure in the generic group model. �

199

APPENDIX B

Proofs of Various Lemmas Used

B.1 A Useful Lemma for Leakage Analysis

Our analysis of the leakage resilience of our system will rely on the fol-

lowing lemma from [28], which is proven using the techniques from [16]. Below,

we let dist(X1, X2) denote the statistical distance of two random variables X1

and X2.

Lemma B.1. Let m, `, d ∈ N, m ≥ ` ≥ 2d and let p be a prime. Let X
R←

Zm×`p , let Y
R← Zm×dp , and let T

R← Rkd
(
Z`×dp

)
, where Rkd

(
Z`×dp

)
denotes the

set of `× d matrices of rank d with entries in Zp. Let f : Zm×dp → W be some

function. Then:

dist ((X, f(X · T)), (X, f(Y))) ≤ ε,

as long as

|W | ≤ 4 ·
(

1− 1

p

)
· p`−(2d−1) · ε2.

200

More precisely, we will use the following corollary:

Corollary B.1.1. Let m ∈ N, m ≥ 3, and let p be a prime. Let ~δ
R← Zmp ,

~τ
R← Zmp , and let ~τ ′ be chosen uniformly randomly from the set of vectors in Zmp

which are orthogonal to ~δ under the dot product modulo p. Let f : Zmp → W

be some function. Then:

dist
(

(~δ, f(~τ ′)), (~δ, f(~τ))
)
≤ ε,

as long as

|W | ≤ 4 ·
(

1− 1

p

)
· pm−2 · ε2.

Proof. We apply Lemma B.1 with d = 1 and ` = m− 1. Y then corresponds

to ~τ , while X corresponds to a basis of the orthogonal space of ~δ. We note

that ~τ ′ is then distributed as X · T , where T
R← Rk1

(
Zm−1×1
p

)
. We note that

X is determined by ~δ, and is distributed as X
R← Zm×m−1

p , since ~δ is chosen

uniformly randomly from Zmp . It follows that:

dist
(

(~δ, f(~τ ′)), (~δ, f(~τ))
)

= dist ((X, f(X · T)), (X, f(Y))) ≤ ε.

�

This corollary allows us to set `MSK = `SK = (n−1−2c) log(p2) for our

construction (we’ll have n+ 1 = m), where c is any fixed positive constant (so

that ε := p−c2 is negligible).

B.2 Proof of claim 6.4

In order to prove claim 6.4 we will use the following theorem:

201

Theorem B.2. Let A ∈ Z`×np be the secret sharing matrix of a linear secret

sharing scheme for an access policy A and L ∈ Zn×np be a matrix such that:

• The first row of L is (1, 0, . . . , 0) ∈ Znp .

• The lower right matrix L′ ∈ Z(n−1)×(n−1)
p of L has rank n− 1.

Then the distribution of the shares {λx}x∈[`] sharing the secret z ∈ Zp generated

with the matrix A is the same as the distribution of the shares {λ′x}x∈[`] sharing

the secret z ∈ Zp generated with the matrix A · L.

Proof. Consider the distribution of the shares {λ′x}x∈[`]. According to the

construction of LSS schemes, it is true that λ′x =
〈
~ALx, ~v

〉
where ~ALx is the

x-th row of the matrix AL and ~v is a random vector with its first element

equal to z.

This implies that λ′x =
〈
~Ax, ~Lv

〉
, where ~Lv ∈ Znp is the vector acquired

by multiplying L with ~v. Since L has the first row (1, 0, . . . , 0) we get that the

first element of ~Lv is z. Moreover the remaining n− 1 elements are uniformly

random from Zp because each one, say the i-th one, is equal to z ·Li,1 +
〈
~L′i, ~v

′
〉

where ~L′i is the i-th row of L′ and ~v′ ∈ Zn−1
p are the last n− 1 elements of ~v.

Since these are uniformly random and L′ is full rank, we get that
〈
~L′i, ~v

′
〉

is

uniformly random.

Therefore, ~Lv is distributed exactly the same as a secret sharing vector

of z. Thus the shares {λ′x} have the same distribution as the shares {λx}. �

202

Proof of claim 6.4 To convert the matrix A to the target matrix A′ we will

apply theorem B.2. Let ~W1, ~W2, . . . , ~Wc be the first c independent rows in C.

These rows form a basis of size c of the relevant subspace and they can be

computed from C in polynomial time using linear algebra operations.

Next we are going to extend this basis to size n such that the final basis

spans the entire space. The first step is to add the row ~U = (1, 0, . . . , 0) ∈ Znp

to the set. Since the set of rows in C is unauthorized, ~U is not in in the

subspace spanned by them and therefore this is a valid choice.

We continue by picking n− c−1 rows, ~V1, ~V2, . . . , ~Vn−c−1, such that the

set {
~U, ~V1, ~V2, . . . , ~Vn−c−1, ~W1, ~W2, . . . , ~WW

}
is a basis of Znp . Using linear algebra operations this can be done in polynomial

time as well.

Finally construct the matrix

L = (L′)−1 =



~U
~V1

. . .
~Vn−c−1

~W1

. . .
~Wc



−1

∈ Zn×np

Using theorem B.2 we will argue that the matrix A′ = A · L will give

us same distribution for the {λx} shares. We should argue first that the

203

matrix L satisfies the requirements of the theorem. This can be done by

trying to compute the inverse matrix, but one straightforward way is to use

the blockwise inversion formula shown in figure B.1.

[
A B
C D

]−1

=

[
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

Figure B.1: Blockwise inversion formula

In our case we have A = [1], B = (0, 0, . . . , 0) ∈ Z1×(n−1)
p , C =

(0, 0, . . . , 0)> ∈ Z(n−1)×1
p , and D is the lower right submatrix of L′ of size

(n− 1)× (n− 1). Therefore we have that

L =


1 0 . . . 0
0

D−1...
0


Since D is of full rank, we can see that L satisfies the requirements

of theorem B.2. The only thing left to prove is that A′ has the required

form. That is, that for all rows ~A′x with x ∈ C, we have that the first n − c

elements are equal to 0. We know that for fixed x ∈ C the row ~Ax is a linear

combination of the basis rows { ~W1, ~W2, . . . , ~Wc}. Therefore ~Ax =
∑

i∈[c] γi
~Wi

with γi constants in Zp.

204

Finally, notice that for all k such that n− c+ 1 ≤ k ≤ n we have that

(

n−c terms︷ ︸︸ ︷
0, . . . , 0,

c terms
1 on the k-th position︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . , 0) · L′ = ~Wk

=⇒ ~Wk · (L′)−1 = (

n−c terms︷ ︸︸ ︷
0, . . . , 0,

c terms
1 on the k-th position︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . , 0)

Therefore the row ~A′x = ~Ax · L =
∑

i∈[c] γi
~Zi, where

~Zi = (

n−c terms︷ ︸︸ ︷
0, . . . , 0,

c terms
1 on the i-th position︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . , 0)

.

As a result the first n− c elements of ~A′x are all equal to 0.

�

205

APPENDIX C

Source Code

C.1 KP-ABE scheme of Sec. 6.1

1 ’’’

2 Rouselakis - Waters Unbounded Key -Policy Attribute -

Based Encryption

3

4 | From:

5 | Published in:

6 | Available from:

7 | Notes:

8

9 * type: attribute -based encryption (public

key)

10 * setting: bilinear pairing group of prime

order

11 * assumption: complex q-type assumption

12

13 :Authors: Yannis Rouselakis

14 :Date: 02/12

15 ’’’

16

17 from toolbox.pairinggroup import *

206

18 from charm.cryptobase import *

19 from toolbox.secretutil import SecretUtil

20 from toolbox.ABEnc import *

21 from BenchmarkFunctions import *

22

23 debug = False

24 class KPABE_RW12(ABEnc):

25 def __init__(self , groupObj , verbose = False):

26 ABEnc.__init__(self)

27 global util , group

28 group = groupObj

29 util = SecretUtil(group , verbose)

30

31 # Defining a function to pick explicit exponents in

the group

32 def exp(self ,value):

33 return group.init(ZR, value)

34

35 def setup(self):

36 # Due to assymmetry in the groups we prefer most

of the terms to be in G1

37 g = group.random(G2)

38 g2 , u, h, w = group.random(G1), group.random(G1),

group.random(G1), group.random(G1)

39 alpha = group.random()

40 egg = pair(g2,g)**alpha

41 pp = {’g’:g, ’g2’:g2 , ’u’:u, ’h’:h, ’w’:w, ’egg’:

egg}

42 mk = {’alpha’:alpha }

43 return (pp, mk)

44

45 def keygen(self , pp , mk , policy_str):

46 # the secret alpha will be shared according to

the policy

47 policy = util.createPolicy(policy_str)

48 a_list = util.getAttributeList(policy)

49 # print ("\n\n THE A-LIST IS", a_list ,"\n\n")

207

50 shares = util.calculateSharesDict(mk[’alpha ’],

policy) #These are correctly set to be

exponents in Z_p; Here alpha is shared

51

52 K0 , K1, K2 = {}, {}, {}

53 for i in a_list:

54 inti = int(util.strip_index(i)) #NOTICE THE

CONVERSION FROM STRING TO INT

55 ri = group.random(ZR)

56 K0[i] = pp[’g2’]** shares[i] * pp[’w’]**ri

57 K1[i] = (pp[’u’]** self.exp(inti) * pp[’h’])**ri

58 K2[i] = pp[’g’]**ri

59

60 return { ’Policy ’:policy_str , ’K0’:K0 , ’K1’:K1, ’

K2’:K2 }

61

62 def encrypt(self , pp , message , S):

63 # S is a list of attributes written as STRINGS i.

e. {’1’, ’2’, ’3’,...}

64 s = group.random ()

65

66 C = message * (pp[’egg’]**s)

67 C0 = pp[’g’]**s

68 wS = pp[’w’]**s

69

70 C1 , C2 = {}, {}

71 for i in S:

72 ti = group.random ()

73 C1[i] = pp[’g’]**ti

74 C2[i] = (pp[’u’]** self.exp(int(i)) * pp[’h’])**

ti * wS #NOTICE THE CONVERSION FROM STRING

TO INT

75 S = [i for i in S] #Have to be an array for util.

prune

76 return { ’S’:S, ’C’:C, ’C0’:C0 , ’C1’:C1 , ’C2’:C2

}

77

208

78 def decrypt(self , pp , sk , ct):

79 policy = util.createPolicy(sk[’Policy ’])

80 z = util.getCoefficients(policy)

81 # print ("\n\n THE COEFF -LIST IS", z,"\n\n")

82

83 pruned_list = util.prune(policy , ct[’S’])

84 # print ("\n\n THE PRUNED -LIST IS", pruned_list ,"\

n\n")

85

86 if (pruned_list == False):

87 return group.init(GT ,1)

88

89

90 B = group.init(GT ,1) # the identity element of GT

91 for i in range(0,len(pruned_list)):

92 x = pruned_list[i]. getAttribute() #without the

underscore

93 y = pruned_list[i]. getAttributeAndIndex() #

with the underscore

94 B *= (pair(sk[’K0’][y], ct[’C0’]) * pair(sk[’

K1’][y], ct[’C1’][x]) / pair(ct[’C2’][x], sk

[’K2’][y]))**z[y]

95

96 return ct[’C’] / B

97

98 def randomMessage(self):

99 return group.random(GT)

100

101

102 def main():

103 curve = ’MNT224 ’

104

105 groupObj = PairingGroup(curve)

106 scheme = KPABE_RW12(groupObj)

107 #print (" Setup(",curve ,")")

108

109 ID = InitBenchmark ()

209

110 startAll(ID)

111 (pp , mk) = scheme.setup ()

112 EndBenchmark(ID)

113

114 #print ("The Public Parameters are",pp)

115 #print ("And the Master Key is",mk)

116 #print ("Done!\n")

117 box1 = getResAndClear(ID, "Setup("+curve+")", "Done

!")

118

119 #--

120

121 policy = ’(123 or 444) and (231 or 999)’

122 #print (" Keygen(", policy ,")")

123

124 ID = InitBenchmark ()

125 startAll(ID)

126 sk = scheme.keygen(pp,mk ,policy)

127 EndBenchmark(ID)

128

129 #print ("The secret key is",sk)

130 #print ("Done!\n")

131 box2 = getResAndClear(ID, "Keygen(" + policy + ")",

"Done!")

132

133 #--

134

135 m = group.random(GT)

136 #print (" Encrypting the message",m)

137 S = {’123’, ’842’, ’231’, ’384’}

138 #print (" Encrypt(", str(S) ,")")

139

140 ID = InitBenchmark ()

141 startAll(ID)

142 ct = scheme.encrypt(pp,m,S)

143 EndBenchmark(ID)

144

210

145 #print ("The ciphertext is",ct)

146 #print ("Done!\n")

147 box3 = getResAndClear(ID, "Encrypt("+str(S)+")", "

Done!")

148

149 #--

150

151 #print (" Decrypt ")

152

153 ID = InitBenchmark ()

154 startAll(ID)

155 res = scheme.decrypt(pp, sk, ct)

156 EndBenchmark(ID)

157

158 #print ("The resulting ciphertext is",res)

159 if res == m:

160 fin = "Successful Decryption :)"

161 else:

162 fin = "Failed Decryption :("

163 box4 = getResAndClear(ID, "Decrypt", fin)

164

165 print(formatNice(box1 ,box2 ,box3 ,box4))

166

167 if __name__ == ’__main__ ’:

168 debug = True

169 main()

C.2 CP-ABE scheme of Sec. 6.2

1 ’’’

2 Rouselakis - Waters Unbounded Ciphertext -Policy

Attribute -Based Encryption

3

4 | From:

5 | Published in:

6 | Available from:

7 | Notes:

8

211

9 * type: attribute -based encryption (public

key)

10 * setting: bilinear pairing group of prime

order

11 * assumption: complex q-type assumption

12

13 :Authors: Yannis Rouselakis

14 :Date: 02/12

15 ’’’

16

17 from toolbox.pairinggroup import *

18 from charm.cryptobase import *

19 from toolbox.secretutil import SecretUtil

20 from toolbox.ABEnc import *

21 from BenchmarkFunctions import *

22

23 debug = False

24 class CPABE_RW12(ABEnc):

25 def __init__(self , groupObj , verbose = False):

26 ABEnc.__init__(self)

27 global util , group

28 group = groupObj

29 util = SecretUtil(group , verbose)

30

31 # Defining a function to pick explicit exponents in

the group

32 def exp(self ,value):

33 return group.init(ZR, value)

34

35 def setup(self):

36 # Due to assymmetry in the groups we prefer most

of the terms to be in G1

37 g = group.random(G2)

38 g2 , u, h, w, v = group.random(G1), group.random(

G1), group.random(G1), group.random(G1), group

.random(G1)

39 alpha = group.random()

212

40 egg = pair(g2,g)**alpha

41 pp = {’g’:g, ’g2’:g2 , ’u’:u, ’h’:h, ’w’:w, ’v’:v,

’egg’:egg}

42 mk = {’alpha’:g2 ** alpha }

43 return (pp, mk)

44

45 def keygen(self , pp , mk , S):

46 # S is a list of attributes written as STRINGS i.

e. {’1’, ’2’, ’3’,...}

47 r = group.random()

48 K0 = mk[’alpha ’] * (pp[’w’]**r)

49 K1 = pp[’g’]**r

50

51 vR = pp[’v’]**r

52

53 K2 , K3 = {}, {}

54 for i in S:

55 ri = group.random()

56 K2[i] = pp[’g’]**ri

57 K3[i] = (pp[’u’]** self.exp(int(i)) * pp[’h’])**

ri * vR #NOTICE THE CONVERSION FROM STRING

TO INT

58 S = [s for s in S] #Have to be an array for util.

prune

59 return { ’S’:S, ’K0’:K0, ’K1’:K1 , ’K2’:K2, ’K3’:

K3 }

60

61 def encrypt(self , pp , message , policy_str):

62 s = group.random ()

63

64 policy = util.createPolicy(policy_str)

65 a_list = util.getAttributeList(policy)

66 #print ("\n\n THE A-LIST IS", a_list ,"\n\n")

67 shares = util.calculateSharesDict(s, policy) #

These are correctly set to be exponents in Z_p

68

69 C = message * (pp[’egg’]**s)

213

70 C0 = pp[’g’]**s

71

72 C1 , C2, C3 = {}, {}, {}

73 for i in a_list:

74 inti = int(util.strip_index(i)) #NOTICE THE

CONVERSION FROM STRING TO INT

75 #print(’The exponent is ’,inti)

76 ti = group.random ()

77 C1[i] = pp[’w’]** shares[i] * pp[’v’]**ti

78 C2[i] = (pp[’u’]** self.exp(inti) * pp[’h’])**ti

79 C3[i] = pp[’g’]**ti

80 return { ’Policy ’:policy_str , ’C’:C, ’C0’:C0, ’C1

’:C1, ’C2’:C2, ’C3’:C3 }

81

82 def decrypt(self , pp , sk , ct):

83 policy = util.createPolicy(ct[’Policy ’])

84 z = util.getCoefficients(policy)

85 #print ("\n\n THE COEFF -LIST IS", z,"\n\n")

86

87 pruned_list = util.prune(policy , sk[’S’])

88 # print ("\n\n THE PRUNED -LIST IS", pruned_list ,"\

n\n")

89

90 if (pruned_list == False):

91 return group.init(GT ,1)

92

93 B = group.init(GT ,1)

94 for i in range(len(pruned_list)):

95 x = pruned_list[i]. getAttribute() #without the

underscore

96 y = pruned_list[i]. getAttributeAndIndex() #

with the underscore

97 #print(x,y)

98 B *= (pair(ct[’C1’][y], sk[’K1’]) * pair(ct[

’C2’][y], sk[’K2’][x]) / pair(sk[’K3’][x],

ct[’C3’][y]))**z[y]

99

214

100 return ct[’C’] * B / pair(sk[’K0’] , ct[’C0’])

101

102 def randomMessage(self):

103 return group.random(GT)

104

105

106 def main():

107 curve = ’MNT224 ’

108

109 groupObj = PairingGroup(curve)

110 scheme = CPABE_RW12(groupObj)

111 # print("Setup(",curve ,")")

112

113 ID = InitBenchmark ()

114 startAll(ID)

115 (pp , mk) = scheme.setup ()

116 EndBenchmark(ID)

117

118 #print ("The Public Parameters are",pp)

119 #print ("And the Master Key is",mk)

120 #print ("Done!\n")

121 box1 = getResAndClear(ID, "Setup("+curve+")", "Done

!")

122

123 #--

124

125 S = {’123’, ’842’, ’231’, ’384’}

126 #print (" Keygen(", str(S) ,")")

127

128 ID = InitBenchmark ()

129 startAll(ID)

130 sk = scheme.keygen(pp,mk ,S)

131 EndBenchmark(ID)

132

133 #print ("The secret key is",sk)

134 #print ("Done!\n")

215

135 box2 = getResAndClear(ID, "Keygen(" + str(S) + ")",

"Done!")

136

137 #--

138

139 m = group.random(GT)

140 policy = ’(123 or 444) and (231 or 999)’

141 #print (" Encrypt(",policy ,")")

142

143 ID = InitBenchmark ()

144 startAll(ID)

145 ct = scheme.encrypt(pp,m,policy)

146 EndBenchmark(ID)

147

148 #print ("The ciphertext is",ct)

149 #print ("Done!\n")

150 box3 = getResAndClear(ID, "Encrypt("+policy+")", "

Done!")

151

152 #--

153

154 #print (" Decrypt ")

155

156 ID = InitBenchmark ()

157 startAll(ID)

158 res = scheme.decrypt(pp, sk, ct)

159 EndBenchmark(ID)

160

161 #print ("The resulting ciphertext is",res)

162 if res == m:

163 fin = "Successful Decryption :)"

164 else:

165 fin = "Failed Decryption :("

166 box4 = getResAndClear(ID, "Decrypt", fin)

167

168 print(formatNice(box1 ,box2 ,box3 ,box4))

169

216

170 if __name__ == ’__main__ ’:

171 debug = True

172 main()

C.3 MA-CP-ABE scheme of Sec. 6.3

1 ’’’

2 Rouselakis - Waters Unbounded Multi -Authority

Ciphertext -Policy Attribute -Based Encryption

3

4 | From:

5 | Published in:

6 | Available from:

7 | Notes:

8

9 * type: attribute -based encryption (public

key)

10 * setting: bilinear pairing group of prime

order

11 * assumption: complex q-type assumption

12

13 :Authors: Yannis Rouselakis

14 :Date: 11/12

15 ’’’

16

17 from toolbox.pairinggroup import *

18 from charm.cryptobase import *

19 from toolbox.secretutil import SecretUtil

20 from toolbox.ABEnc import *

21 from BenchmarkFunctions import *

22

23 debug = False

24 class MAABE_RW12 ():

25

26

27 def randomMessage(self):

28 return group.random(GT)

29

217

30 # Defining a function to pick explicit exponents in

the group

31 def exp(self ,value):

32 return group.init(ZR, value)

33

34 def getAuth(self ,x):

35 i = x.find("@")

36 if (i==-1):

37 print("Error: No @ char in [auth@attr] name")

38 return

39

40 j = x.find("_")

41 if (j==-1):

42 return x[i+1:]

43 else:

44 return x[i+1:j]

45

46 def getAttr(self , attrWithUnderscore):

47 i = attrWithUnderscore.rfind("_")

48 if (i==-1):

49 return attrWithUnderscore

50 else:

51 return attrWithUnderscore [:i]

52

53 def __init__(self , groupObj , verbose = False):

54

55 global util , group

56 group = groupObj

57 util = SecretUtil(group , verbose)

58

59 def GlobalSetup(self):

60 g1 = group.random(G1)

61 g2 = group.random(G2)

62 egg = pair(g1,g2)

63 H = lambda x: group.hash(x, G2)

64 F = lambda x: group.hash(x, G2)

65 gp = {’g1’:g1 , ’g2’:g2 , ’egg’:egg , ’H’:H, ’F’:F}

218

66 return gp

67

68 def AuthSetup(self , gp, name):

69 alpha , y = group.random (), group.random ()

70 egga = gp[’egg’]** alpha

71 gy = gp[’g1’]**y

72 pk = {’name’:name , ’egga’:egga , ’gy’:gy}

73 sk = {’name’:name , ’alpha’:alpha , ’y’:y}

74 return (pk, sk)

75

76 def KeyGenOne(self , gp, gid , sk , attr): # the

authority ’s name is included in the secret key

77

78 # check here if gid name is legal

79

80 # checking if attribute is legal

81 if (sk[’name’] != self.getAuth(attr)):

82 print("Error: Attribute ", attr , " does not

belong to authority ", sk[’name’])

83 return

84

85 t = group.random ()

86 K = gp[’g2’]**sk[’alpha’] * gp[’H’](gid)**sk[’y’]

* gp[’F’](attr)**t

87 #K = gp[’g2 ’]**sk[’alpha ’] * gp[’F ’](attr)**t

88 KP = gp[’g1’]**t

89

90 return { ’user’:gid , ’auth’:sk[’name’], ’attr’:

attr , ’K’:K, ’KP’:KP }

91

92 def KeyGen(self , gp , gid , authSkChain , attributes):

93 #check here if gid name is legal

94

95 sks = {}

96 for attr in attributes:

97 auth = self.getAuth(attr)

219

98 sk = self.KeyGenOne(gp, gid , authSkChain[auth],

attr)

99 sks[attr] = sk

100

101 return {’GID’:gid , ’Attributes ’:attributes , ’

Chain’: sks}

102

103 def Encrypt(self , gp , pks , message , policy_str):

104 s = group.random () #secret to be shared

105 w = group.init(ZR , 0) #0 to be shared

106

107 policy = util.createPolicy(policy_str)

108 a_list = util.getAttributeList(policy)

109 #print ("\n\n THE A-LIST IS", a_list ,"\n\n")

110 #for i in a_list:

111 # print(self.getAuth(i))

112

113 secretShares = util.calculateSharesDict(s, policy

) #These are correctly set to be exponents in

Z_p

114 zeroShares = util.calculateSharesDict(w, policy)

115

116 C0 = message * (gp[’egg’]**s)

117

118 C1 , C2, C3, C4 = {}, {}, {}, {}

119 for i in a_list:

120 auth = self.getAuth(i)

121 attr = self.getAttr(i) #take out the possible

underscore

122 tx = group.random ()

123 C1[i] = gp[’egg’]** secretShares[i] * pks[auth][

’egga’]**tx

124 C2[i] = gp[’g1’]**(-tx)

125 C3[i] = pks[auth][’gy’]**tx * gp[’g1’]**

zeroShares[i]

126 C4[i] = gp[’F’](attr)**tx

127

220

128 return { ’Policy ’:policy_str , ’C0’:C0 , ’C1’:C1, ’

C2’:C2, ’C3’:C3, ’C4’:C4 }

129

130 def Decrypt(self , gp , sk_chain , ct):

131 hgid = gp[’H’](sk_chain[’GID’])

132

133 policy = util.createPolicy(ct[’Policy ’])

134 z = util.getCoefficients(policy)

135 # print ("\n\n THE COEFF -LIST IS", z,"\n\n")

136

137 pruned_list = util.prune(policy , sk_chain[’

Attributes ’])

138 # print ("\n\n THE PRUNED -LIST IS", pruned_list ,"\n\

n")

139

140 if (pruned_list == False):

141 return group.init(GT ,1)

142

143 B = group.init(GT ,1)

144 for i in range(len(pruned_list)):

145 x = pruned_list[i]. getAttribute() #without the

underscore

146 y = pruned_list[i]. getAttributeAndIndex() #

with the underscore

147 #print(x,y)

148 #print(z[y])

149 B *= (ct[’C1’][y] * pair(ct[’C2’][y], sk_chain

[’Chain’][x][’K’]) * pair(ct[’C3’][y], hgid)

* pair(sk_chain[’Chain ’][x][’KP’], ct[’C4’

][y]))**z[y]

150

151 return ct[’C0’]/B

152

153 def prettyPrint(initStr , myDict , tab=""):

154 typesEnum = ["ZP", "G1", "G2", "GT"]

155 if (len(initStr) >0):

156 print(initStr)

221

157 for (k,v) in myDict.items ():

158 if (isinstance(v,dict)):

159 print(tab , k, ": ", type(v))

160 prettyPrint("", v, tab + " ")

161 elif (isinstance(v,str)):

162 print(tab , k, ": ", v)

163 elif (isinstance(v,set)):

164 print(tab , k, ": ", v)

165 elif (isinstance(v,pairing)):

166 print(tab , k, ": ", typesEnum[v.type])

167 else:

168 print(tab , k, ": ", type(v))

169 if (tab==""):

170 print("\n")

171

172 def main():

173 curve = ’MNT224 ’

174

175 groupObj = PairingGroup(curve)

176 scheme = MAABE_RW12(groupObj)

177 print("Curve = ",curve)

178

179 ID = InitBenchmark ()

180 startAll(ID)

181 gp = scheme.GlobalSetup ()

182 EndBenchmark(ID)

183 boxGS = getResAndClear(ID , "GSetup("+curve+")", "

Done!")

184

185 #prettyPrint ("The global parameters are ", gp)

186

187 pks , sks = {}, {}

188

189 ID = InitBenchmark ()

190 startAll(ID)

191 (pk ,sk) = scheme.AuthSetup(gp,"UT")

192 EndBenchmark(ID)

222

193 boxAS = getResAndClear(ID , "ASetup(" + "UT" + ")",

"Done!")

194

195 pks[pk[’name’]] = pk

196 sks[sk[’name’]] = sk

197

198 (pk ,sk) = scheme.AuthSetup(gp,"OU")

199 pks[pk[’name’]] = pk

200 sks[sk[’name’]] = sk

201

202 #prettyPrint ("The authority public key chain is ",

pks)

203 #prettyPrint ("The authority secret key chain is ",

sks)

204

205 ID = InitBenchmark ()

206 startAll(ID)

207 key = scheme.KeyGen(gp, "YANNIS", sks , {"STUDENT@UT

", "PHD@UT"})

208 EndBenchmark(ID)

209 boxKG = getResAndClear(ID , "KeyGen", "Done!")

210

211 #prettyPrint ("The secret key is ", key)

212

213 m = scheme.randomMessage ()

214 policy = ’(STUDENT@UT or PROFESSOR@OU) and (

STUDENT@UT or MASTERS@OU)’

215

216 ID = InitBenchmark ()

217 startAll(ID)

218 ct = scheme.Encrypt(gp, pks , m, policy)

219 EndBenchmark(ID)

220 boxEC = getResAndClear(ID , "Encrypt", "Done!")

221

222 #prettyPrint ("The ciphertext is ", ct)

223

224 ID = InitBenchmark ()

223

225 startAll(ID)

226 res = scheme.Decrypt(gp, key , ct)

227 EndBenchmark(ID)

228

229 if res == m:

230 fin = "Successful Decryption :)"

231 else:

232 fin = "Failed Decryption :("

233

234 boxDE = getResAndClear(ID , "Decrypt", fin)

235

236 #print(fin)

237

238 print(formatNice(boxGS ,boxAS ,boxKG ,boxEC , boxDE))

239

240 if __name__ == ’__main__ ’:

241 debug = True

242 main()

C.4 Implementation of Dual Vector Spaces

1 ’’’

2 Class to create the Dual Pairing Vector Spaces

3

4 :Authors: Yannis Rouselakis

5 :Date: 4/24/12

6 ’’’

7

8 from toolbox.pairinggroup import *

9 from charm.cryptobase import *

10

11 debug = False

12 class DualVectorSpace ():

13

14 def __init__(self , groupObj , dim , psiSet = 0):

15 global group

16 group = groupObj #we will use Charm to do

the modular arithmetic for us

224

17 #global Base # a 2 x dim x dim matrix

18 #global Psi # the common inner product of all

d_i d*_i

19 if (type(psiSet) == int):

20 self.Psi = group.random(ZR)

21 else:

22 self.Psi = psiSet

23 self.Base = [None]*2

24 self.Base [0] = self.createRandomMatrix(dim)

25 self.Base [1] = self.gaussElimin(self.Base [0])

26

27 def getVector(self , b, i):

28 return self.Base[b][i]

29

30 def getPsi(self):

31 return self.Psi

32

33 def createRandomMatrix(self ,dim): #this

function will return a random matrix in Z_p of

dimension dim x dim

34 return [[group.random(ZR) for i in range(0,dim)]

for j in range(0,dim)]

35

36 def gaussElimin(self , mat):

37

38 work = [([mat[i][j] for j in range(0,len(mat))]

+ [(self.Psi if (i==j) else group.init(ZR, 0))

for j in range(0,len(mat))]) for i in range

(0,len(mat [0]))]

39

40 # self.printOneBasis(work)

41

42 (h,w) = (len(work),len(work [0]))

43

44 #making it upper triangular

45 for i in range(0,h):

46 for i2 in range(i+1,h):

225

47 c = work[i2][i] / work[i][i] #I should

check here for singular matrices (no: negl

prob)

48 for j in range(i,w):

49 work[i2][j] -= work[i][j] * c

50

51 # print ("")

52 # self.printOneBasis(work)

53

54 #backsubstitution

55 for i in range(h-1, 0-1, -1):

56

57 # Normalize row i

58 c = work[i][i]

59 for j in range(i, w):

60 work[i][j] /= c

61

62 for i2 in range(0,i):

63 c = work[i2][i]

64 for j in range(i,w):

65 work[i2][j] -= c * work[i][j]

66

67 # print ("")

68 # self.printOneBasis(work)

69

70 # transposing + cropping

71 result = [[work[i][j] for i in range(0,h)] for j

in range(int(w/2), w)]

72

73 # print ("")

74 # self.printOneBasis(result)

75 return result

76

77 def printBases(self , full = False):

78 for b in range (0,2):

79 if b==0:

80 print("Normal Basis:")

226

81 else:

82 print("Star Basis:")

83 self.printOneBasis(self.Base[b],full)

84

85

86 def printOneBasis(self , mat , full = False):

87 if full:

88 print(mat[i])

89 else:

90 for i in range(0,len(mat)):

91 bigStr = "["

92 for j in range(0,len(mat[i])):

93 cut = (int(mat[i][j]) > 999)

94

95 smallStr = str(int(mat[i][j]) % 1000)

96 extraSp = 3 - len(smallStr)

97

98 if cut:

99 bigStr += ".."

100 for k in range(0, extraSp):

101 bigStr += "0"

102 else:

103 bigStr += " "

104 for k in range(0, extraSp):

105 bigStr += " "

106 bigStr += smallStr

107

108 if j!=(len(mat[i]) -1):

109 bigStr += ", "

110 else:

111 bigStr += "]"

112 print(bigStr)

113

114 def checkOrthogonality(self):

115 dim = len(self.Base [0][0]) # getting the

dimension

116

227

117 res = [[group.init(ZR, 0) for i in range(0,dim)]

for j in range(0,dim)]

118

119 # matrix multiplication (the naive way)

120 for i in range(0,dim):

121 for j in range(0,dim):

122 curr = group.init(ZR, 0)

123 for k in range(0,dim):

124 curr += self.Base [0][i][k] * self.Base [1][j

][k]

125 res[i][j] = curr

126

127 print("B times transpose B*")

128 self.printOneBasis(res , False)

129

130

131 def main():

132 groupObj = PairingGroup(’MNT224 ’)

133 DV = DualVectorSpace(groupObj ,10)

134

135 DV.printBases ()

136

137 DV.checkOrthogonality () #visual check ;)

138

139 if __name__ == ’__main__ ’:

140 debug = True

141 main()

228

Index

ABE, 59–68

Ciphertext-Policy, 60

Key-Policy, 61

Multi-Authority, 63

Abstract, v

Access Structures, 24

Acknowledgments, iv

Appendices, 189

Attribute-Based Encryption,

see ABE

Bibliography, 243

Bilinear Groups, 40–55

Composite Order, 42

Prime Order, 41

Bounded Leakage Model, 31

Ciphertext-Policy ABE, see ABE

Composite Order Bilinear Groups,

see Bilinear Groups

Continual Leakage Model, 31

CP-ABE, see ABE

Elliptic Curves, 51–55

Exposure - Resilient Cryptography,

30

IBE, 57–59

Idenity-Based Encryption, see IBE

Key-Policy ABE, see ABE

KP-ABE, see ABE

Large Universe ABE, 65

Linear Secret-Sharing Schemes, 25

MA-CP-ABE, see ABE

Multi-Authority ABE, see ABE

Multi-Authority Attributes, 27

Nominal Semi-Functionality, 36

“Only Computation Leaks”, 30

Prime Order Bilinear Groups,

see Bilinear Groups

Semi-Functionality, 35

Small Universe ABE, 65

Unbounded ABE, 66

229

Bibliography

[1] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hard-

core bits and cryptography against memory attacks. In TCC, pages

474–495, 2009.

[2] Joseph A. Akinyele, Matthew Green, and Avi Rubin. Charm: A frame-

work for rapidly prototyping cryptosystems. Cryptology ePrint Archive,

Report 2011/617, 2011. http://eprint.iacr.org/.

[3] Sattam S. Al-Riyami, John Malone-Lee, and Nigel P. Smart. Escrow-

free encryption supporting cryptographic workflow. Int. J. Inf. Sec.,

5(4):217–229, 2006.

[4] J. Alwen, Y. Dodis, M. Naor, G. Segev, S. Walfish, and D. Wichs. Public

- key encryption in the bounded - retrieval model. In EUROCRYPT,

pages 113–134, 2010.

[5] J. Alwen, Y. Dodis, and D. Wichs. Leakage-resilient public-key cryp-

tography in the bounded-retrieval model. In CRYPTO, pages 36–54,

2009.

230

[6] J. Alwen and L. Ibraimi. Leakage resilient ciphertext-policy attribute-

based encryption. manuscript, 2010.

[7] Walid Bagga, Refik Molva, and Stefano Crosta. Policy-based encryption

schemes from bilinear pairings. In ASIACCS, page 368, 2006.

[8] Manuel Barbosa and Pooya Farshim. Secure cryptographic workflow in

the standard model. In INDOCRYPT, pages 379–393, 2006.

[9] Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution.

PhD thesis, Dept. of Computer Science, Technion, 1996.

[10] M. Bellare, B. Waters, and S. Yilek. Identity-based encryption secure

under selective opening attack. In TCC, 2011.

[11] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy

attribute-based encryption. In IEEE Symposium on Security and Pri-

vacy, pages 321–334, 2007.

[12] E. Biham, Y. Carmeli, and A. Shamir. Bug attacks. In CRYPTO,

pages 221–240, 2008.

[13] E. Biham and A. Shamir. Differential fault analysis of secret key cryp-

tosystems. In CRYPTO, pages 513–525, 1997.

[14] I. Blake, G. Seroussi, N. Smart, and J. W. S. Cassels. Advances in

Elliptic Curve Cryptography (London Mathematical Society Lecture Note

Series). Cambridge University Press, New York, NY, USA, 2005.

231

[15] Ian F. Blake, G. Seroussi, and N. P. Smart. Elliptic curves in cryptog-

raphy. Cambridge University Press, New York, NY, USA, 1999.

[16] A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deter-

ministic encryption, and efficient constructions without random oracles.

In CRYPTO, pages 335–359, 2008.

[17] D. Boneh and X. Boyen. Secure identity based encryption without

random oracles. In CRYPTO, pages 443–459, 2004.

[18] D. Boneh and D. Brumley. Remote timing attacks are practical. Com-

puter Networks, 48(5):701–716, 2005.

[19] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of

checking cryptographic protocols for faults. In EUROCRYPT, pages

37–51, 1997.

[20] D. Boneh and M. Franklin. Identity-based encryption from the weil

pairing. In CRYPTO, pages 213–229, 2001.

[21] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-

based encryption without random oracles. In EUROCRYPT, pages

223–238, 2004.

[22] Dan Boneh and Matthew K. Franklin. Identity-based encryption from

the weil pairing. SIAM J. Comput., 32(3):586–615, 2003. extended

abstract in Crypto 2001.

232

[23] Dan Boneh, Craig Gentry, and Michael Hamburg. Space-efficient iden-

tity based encryption without pairings. In FOCS, pages 647–657, 2007.

[24] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption:

Definitions and challenges. In TCC, pages 253–273, 2011.

[25] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries

on encrypted data. In TCC, pages 535–554, 2007.

[26] Robert W. Bradshaw, Jason E. Holt, and Kent E. Seamons. Conceal-

ing complex policies with hidden credentials. In ACM Conference on

Computer and Communications Security, pages 146–157, 2004.

[27] Z. Brakerski and S. Goldwasser. Circular and leakage resilient public-key

encryption under subgroup indistinguishability (or: Quadratic residuos-

ity strikes back). In CRYPTO, pages 1–20, 2010.

[28] Z. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan. Overcoming

the hole in the bucket: Public-key cryptography resilient to continual

memory leakage. In FOCS, pages 501–510, 2010.

[29] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-

resilient functions and all-or-nothing transforms. In EUROCRYPT,

pages 453–469, 2000.

[30] D. Cash, Y. Z. Ding, Y. Dodis, W. Lee, R. J. Lipton, and S. Walfish.

Intrusion-resilient key exchange in the bounded retrieval model. In

TCC, pages 479–498, 2007.

233

[31] Certivox. Miracl crypto sdk. https://certivox.com/solutions/

miracl-crypto-sdk/.

[32] Charm. http://www.charm-crypto.com.

[33] Melissa Chase. Multi-authority attribute based encryption. In TCC,

pages 515–534, 2007.

[34] Melissa Chase and Sherman S. M. Chow. Improving privacy and secu-

rity in multi-authority attribute-based encryption. In ACM Conference

on Computer and Communications Security, pages 121–130, 2009.

[35] Ling Cheung and Calvin C. Newport. Provably secure ciphertext policy

abe. In ACM Conference on Computer and Communications Security,

pages 456–465, 2007.

[36] S. Chow, Y. Dodis, Y. Rouselakis, and B. Waters. Practical leakage-

resilient identity-based encryption from simple assumptions. In ACM

Conference on Computer and Communications Security, pages 152–161,

2010.

[37] Clifford Cocks. An identity based encryption scheme based on quadratic

residues. In IMA Int. Conf., pages 360–363, 2001.

[38] D. Di Crescenzo, R. J. Lipton, and S. Walfish. Perfectly secure password

protocols in the bounded retrieval model. In TCC, pages 225–244, 2006.

234

[39] Y. Dodis, K. Haralambiev, A. Lopez-Alt, and D. Wichs. Cryptography

against continuous memory attacks. In FOCS, pages 511–520, 2010.

[40] Y. Dodis, Y. Kalai, and S. Lovett. On cryptography with auxiliary

input. In STOC, pages 621–630, 2009.

[41] Y. Dodis and K. Pietrzak. Leakage-resilient pseudorandom functions

and side-channel attacks on feistel networks. In CRYPTO, pages 21–40,

2010.

[42] Y. Dodis, A. Sahai, and A. Smith. On perfect and adaptive security

in exposure-resilient cryptography. In EUROCRYPT, pages 301–324,

2001.

[43] S. Dziembowski. Intrusion-resilience via the bounded-storage model. In

TCC, pages 207–224, 2006.

[44] S. Dziembowski and K. Pietrzak. Intrusion-resilient secret sharing. In

FOCS, pages 227–237, 2007.

[45] S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In

FOCS, pages 293–302, 2008.

[46] S. Faust, E. Kiltz, K. Pietrzak, and G. N. Rothblum. Leakage-resilient

signatures. In TCC, pages 343–360, 2010.

[47] David Mandell Freeman. Converting pairing-based cryptosystems from

composite-order groups to prime-order groups. In EUROCRYPT, pages

44–61, 2010.

235

[48] Steven D. Galbraith, Kenneth G. Paterson, Nigel P. Smart, and Nigel P.

Smart. Pairings for cryptographers. In Discrete Applied Mathematics,

2008.

[49] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis:

Concrete results. In CHES, pages 251–261, 2001.

[50] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Wa-

ters. Attribute-based encryption for circuits from multilinear maps. In

CRYPTO, 2013.

[51] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness

encryption and its applications. In STOC, pages 467–476, 2013.

[52] C. Gentry and S. Halevi. Hierarchical identity based encryption with

polynomially many levels. In TCC, pages 437–456, 2009.

[53] Craig Gentry. Practical identity-based encryption without random ora-

cles. In EUROCRYPT, pages 445–464, 2006.

[54] S. Goldwasser and G. Rothblum. Securing computation against contin-

uous leakage. In CRYPTO, pages 59–79, 2010.

[55] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate

encryption for circuits. In STOC, 2013.

[56] Vipul Goyal, Abhishek Jain, Omkant Pandey, and Amit Sahai. Bounded

ciphertext policy attribute based encryption. In ICALP (2), pages 579–

591, 2008.

236

[57] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute

- based encryption for fine - grained access control of encrypted data.

In ACM Conference on Computer and Communications Security, pages

89–98, 2006.

[58] A. Halderman, S. Schoen, N. Heninger, W. Clarkson, W. Paul, J. Ca-

landrino, A. Feldman, J. Applebaum, and E. Felten. Lest we remember:

Cold boot attacks on encryption keys. In USENIX Security Symposium,

pages 45–60, 2008.

[59] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware

against probing attacks. In CRYPTO, pages 463–481, 2003.

[60] A. Juma and Y. Vahlis. On protecting cryptographic keys against side-

channel attacks. In CRYPTO, pages 41–58, 2010.

[61] J. Kamp and D. Zuckerman. Deterministic extractors for bit-fixing

sources and exposure-resilient cryptography. In FOCS, pages 92–101,

2003.

[62] Mauricio Karchmer, Avi Wigderson, and Avi Wigderson. On span

programs. In Structure in Complexity Theory Conference, pages 102–

111, 1993.

[63] J. Katz and V. Vaikuntanathan. Signature schemes with bounded leak-

age resilience. In ASIACRYPT, pages 703–720, 2009.

237

[64] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption

supporting disjunctions, polynomial equations, and inner products. In

EUROCRYPT, pages 146–162, 2008.

[65] P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,

dss, and other systems. In CRYPTO, pages 104–113, 1996.

[66] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In

CRYPTO, pages 388–397, 1999.

[67] Arjen K. Lenstra, Eric R. Verheul, and Eric R. Verheul. Selecting

cryptographic key sizes. In Public Key Cryptography, pages 446–465,

2000.

[68] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters.

Fully secure functional encryption: Attribute-based encryption and (hi-

erarchical) inner product encryption. In EUROCRYPT, pages 62–91,

2010.

[69] Allison Lewko. Functional Encryption: New Proof Techniques and Ad-

vancing Capabilities. PhD thesis, The University of Texas at Austin,

2012.

[70] Allison B. Lewko. Tools for simulating features of composite order

bilinear groups in the prime order setting. In EUROCRYPT, pages

318–335, 2012.

238

[71] Allison B. Lewko, Yannis Rouselakis, and Brent Waters. Achieving

leakage resilience through dual system encryption. In TCC, pages 70–

88, 2011.

[72] Allison B. Lewko and Brent Waters. New techniques for dual system

encryption and fully secure hibe with short ciphertexts. In TCC, pages

455–479, 2010.

[73] Allison B. Lewko and Brent Waters. Decentralizing attribute-based

encryption. In EUROCRYPT, pages 568–588, 2011.

[74] Allison B. Lewko and Brent Waters. Unbounded hibe and attribute-

based encryption. In EUROCRYPT, pages 547–567, 2011.

[75] Allison B. Lewko and Brent Waters. Why proving hibe systems secure

is difficult. IACR Cryptology ePrint Archive, 2013:68, 2013.

[76] Ben Lynn. The stanford pairing based crypto library. http://crypto.

stanford.edu/pbc.

[77] S. Micali and L. Reyzin. Physically observable cryptography. In TCC,

pages 278–296, 2004.

[78] Gerome Miklau and Dan Suciu. Controlling access to published data

using cryptography. In VLDB, pages 898–909, 2003.

[79] Atsuko Miyaji, Masaki Nakabayashi, and Shunzo Takano. Characteriza-

tion of elliptic curve traces under fr-reduction. In ICISC, pages 90–108,

2000.

239

[80] M. Naor and G. Segev. Public-key cryptosystems resilient to key leak-

age. In CRYPTO, pages 18–35, 2009.

[81] P. Q. Nguyen and I. Shparlinski. The insecurity of the digital signature

algorithm with partially known nonces. J. Cryptology, 15(3):151–176,

2002.

[82] Noam Nisan. Extracting randomness: How and why a survey. In IEEE

Conference on Computational Complexity, pages 44–58, 1996.

[83] National Institute of Standards and Technology. Digital signature stan-

dard (dss), June 2009. http://csrc.nist.gov/publications/fips/

fips186-3/fips_186-3.pdf.

[84] Tatsuaki Okamoto and Katsuyuki Takashima. Homomorphic encryp-

tion and signatures from vector decomposition. In Pairing, pages 57–74,

2008.

[85] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate

encryption for inner-products. In ASIACRYPT, pages 214–231, 2009.

[86] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional

encryption with general relations from the decisional linear assumption.

In CRYPTO, pages 191–208, 2010.

[87] Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-

hiding (hierarchical) inner product encryption. In EUROCRYPT, pages

591–608, 2012.

240

[88] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure unbounded

inner-product and attribute-based encryption. In ASIACRYPT, pages

349–366, 2012.

[89] Tatsuaki Okamoto and Katsuyuki Takashima. Decentralized attribute-

based signatures. In Public Key Cryptography, pages 125–142, 2013.

[90] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based en-

cryption with non-monotonic access structures. In ACM Conference on

Computer and Communications Security, pages 195–203, 2007.

[91] Dan Page, Nigel P. Smart, Frederik Vercauteren, and Frederik Ver-

cauteren. A comparison of mnt curves and supersingular curves. In

IACR Cryptology ePrint Archive, page 165, 2004.

[92] Omkant Pandey and Yannis Rouselakis. Property preserving symmetric

encryption. In EUROCRYPT, pages 375–391, 2012.

[93] C. Petit, F.X. Standaert, O. Pereira, T. Malkin, and M. Yung. A

block cipher based pseudo random number generator secure against side-

channel key recovery. In ASIACCS, pages 56–65, 2008.

[94] K. Pietrzak. A leakage-resilient mode of operation. In EUROCRYPT,

pages 462–482, 2009.

[95] Matthew Pirretti, Patrick Traynor, Patrick McDaniel, and Brent Waters.

Secure attribute-based systems. In ACM Conference on Computer and

Communications Security, pages 99–112, 2006.

241

[96] J. Quisquater and D. Samyde. Electromagnetic analysis (ema): Mea-

sures and counter-measures for smart cards. In E-smart, pages 200–210,

2001.

[97] Yannis Rouselakis and Brent Waters. Efficient large universe multi -

authority attribute - based encryption. Manuscript, 2012.

[98] Yannis Rouselakis and Brent Waters. Practical constructions and new

proof methods for large universe attribute-based encryption. In ACM

Conference on Computer and Communications Security, 2013.

[99] A. Sahai and B. Waters. Fuzzy identity-based encryption. In EURO-

CRYPT, pages 457–473, 2005.

[100] Adi Shamir. Identity-based cryptosystems and signature schemes. In

CRYPTO, pages 47–53, 1984.

[101] Adi Shamir. Identity-based cryptosystems and signature schemes. In

CRYPTO, pages 47–53, 1984.

[102] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryp-

tion systems. In TCC, pages 457–473, 2009.

[103] Elaine Shi and Brent Waters. Delegating capabilities in predicate en-

cryption systems. In ICALP (2), pages 560–578, 2008.

[104] Victor Shoup. Lower bounds for discrete logarithms and related prob-

lems. In EUROCRYPT, pages 256–266, 1997.

242

[105] Nigel P. Smart. Access control using pairing based cryptography. In

CT-RSA, pages 111–121, 2003.

[106] Source code of our constructions. www.cs.utexas.edu/~jrous.

[107] F.X. Standaert, T. Malkin, and M. Yung. A unified framework for the

analysis of side-channel key recovery attacks. In EUROCRYPT, pages

443–461, 2009.

[108] Lawrence C. Washington. Elliptic Curves: Number Theory and Cryp-

tography, Second Edition. Chapman & Hall/CRC, 2 edition, 2008.

[109] B. Waters. Functional encryption for regular languages. In CRYPTO,

pages 218–235, 2012.

[110] Brent Waters. Efficient identity-based encryption without random ora-

cles. In EUROCRYPT, pages 114–127, 2005.

[111] Brent Waters. Dual system encryption: Realizing fully secure ibe and

hibe under simple assumptions. In CRYPTO, pages 619–636, 2009.

[112] Brent Waters. Ciphertext-policy attribute-based encryption: An ex-

pressive, efficient, and provably secure realization. In Public Key Cryp-

tography, pages 53–70, 2011.

243

Vita

Ioannis “Yannis” Rouselakis was born in Athens, Greece on September 24,

1982, the son of Zoumpoulia I. Kriara and Konstantinos I. Rouselakis. Orig-

inally from Ierapetra, Crete, Yannis spent most of his childhood in Athens.

He received his B.E. degree in Electrical and Computer Engineering from the

National Technical University of Athens in 2007 with grade 9.74/10. He be-

gan his doctoral studies at the University of Texas at Austin in the spring of

2008.

Email address: johnysrouss@gmail.com

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

244

